Spaces:
Runtime error
Runtime error
import os | |
import pinecone | |
import gradio as gr | |
from openai import OpenAI | |
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) | |
pinecone.init(api_key=os.getenv("PINECONE_API_TOKEN"), environment=os.getenv("PINECONE_ENVIRONMENT")) | |
index = pinecone.Index(os.getenv("PINECONE_INDEX")) | |
def init_prompt(type_prompt: str) -> str: | |
if type_prompt == "main": | |
name_file = 'main_prompt.txt' | |
else: | |
name_file = 'standalone_question.txt' | |
with open(f"prompts/{name_file}", mode='r', encoding='utf-8') as infile: | |
prompt = infile.read() | |
return prompt | |
def get_embedding(text: str) -> list[float]: | |
response = openai_client.embeddings.create( | |
input=text, | |
model='text-embedding-ada-002' | |
) | |
return response.data[0].embedding | |
def call_api(message_history: list[dict]) -> str: | |
response = openai_client.chat.completions.create( | |
model='gpt-4-1106-preview', | |
temperature=0.7, | |
messages=message_history | |
) | |
return response.choices[0].message.content | |
def get_standalone_question(question: str, message_history: list[dict], prompt_q: str) -> str: | |
# Format the message history like: Human: blablablá \nAssistant: blablablá | |
history = '' | |
for i, msg in enumerate(message_history): | |
if i == 0: | |
continue # Omit the prompt | |
if i % 2 == 0: | |
history += f'Human: {msg["content"]}\n' | |
else: | |
history += f'Assistant: {msg["content"]}\n' | |
# Add history and question to the prompt and call chatgpt | |
prompt = [{'role': 'system', 'content': ''}] | |
content = prompt_q.replace('HISTORY', history).replace('QUESTION', question) | |
prompt[0]['content'] = content | |
return call_api(prompt) | |
def get_context(question: str) -> str: | |
q_embedding = get_embedding(question) | |
# Get most similar vectors | |
result = index.query( | |
vector=q_embedding, | |
top_k=10, | |
include_metadata=True | |
)['matches'] | |
# Crete a string based on the text of each vector | |
context = '' | |
for r in result: | |
context += r['metadata']['Text'] + '\n' | |
return context | |
def get_answer(context: str, message_history: list[dict], question: str, prompt_m: str) -> str: | |
message_history[0]['content'] = prompt_m.replace('CONTEXT', context) | |
message_history.append({'role': 'user', 'content': question}) | |
return call_api(message_history) | |
def ask_query( | |
msg: str, chat_history: list[list[str | None]], message_history: list[dict], prompt_q: str, prompt_m: str | |
) -> tuple[str, list[list[str | None]], list[dict]]: | |
if len(chat_history) == 5: | |
answer = 'Un placer haberte ayudado, hasta luego!' | |
else: | |
question = get_standalone_question(msg, message_history, prompt_q) | |
context = get_context(question) | |
answer = get_answer(context, message_history, question, prompt_m) | |
message_history.append({'role': 'assistant', 'content': answer}) | |
chat_history.append([msg, answer]) | |
return "", chat_history, message_history | |
def start_chat(chat_history: list[list[str | None]], prompt_m: str): | |
greeting = ('Hola 👋, ¡estoy encantada de conversar contigo! Antes de empezar, quiero asegurarte algo ' | |
'importante: tu privacidad y confidencialidad son mi máxima prioridad. Puedes estar ' | |
'tranquila sabiendo que nuestras conversaciones son completamente seguras y nunca ' | |
'serán compartidas con terceros. ¿En qué puedo ayudarte hoy?') | |
message_history = [ | |
{'role': 'system', 'content': prompt_m}, | |
{'role': 'assistant', 'content': greeting} | |
] | |
chat_history.append(['', greeting]) | |
return message_history, chat_history, gr.Button(visible=False), gr.Text(visible=True) | |