Spaces:
Runtime error
Runtime error
Create main.py
Browse filesAdded sentiment analysis
main.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import MarianMTModel, MarianTokenizer, GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Translation
|
6 |
+
def translate(text, target_language):
|
7 |
+
language_codes = {
|
8 |
+
"Spanish": "es",
|
9 |
+
"French (European)": "fr",
|
10 |
+
"French (Canadian)": "fr",
|
11 |
+
"Italian": "it",
|
12 |
+
"Ukrainian": "uk",
|
13 |
+
"Portuguese (Brazilian)": "pt_BR",
|
14 |
+
"Portuguese (European)": "pt",
|
15 |
+
"Russian": "ru",
|
16 |
+
"Chinese": "zh",
|
17 |
+
"Dutch": "nl",
|
18 |
+
"German": "de",
|
19 |
+
"Arabic": "ar",
|
20 |
+
"Hebrew": "he",
|
21 |
+
"Greek": "el"
|
22 |
+
}
|
23 |
+
|
24 |
+
|
25 |
+
# Text Generation
|
26 |
+
def generate_text(prompt):
|
27 |
+
text_gen = pipeline("text-generation", model="gpt2")
|
28 |
+
generated_text = text_gen(prompt, max_length=max_length, do_sample=True)[0]["generated_text"]
|
29 |
+
return generated_text
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
# Text Classification
|
35 |
+
def classify_text(text):
|
36 |
+
classifier = pipeline("zero-shot-classification")
|
37 |
+
result = classifier(text, labels.split(','))
|
38 |
+
scores = result["scores"]
|
39 |
+
predictions = result["labels"]
|
40 |
+
sorted_predictions = [pred for _, pred in sorted(zip(scores, predictions), reverse=True)]
|
41 |
+
return sorted_predictions
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
# Sentiment Analysis
|
46 |
+
def sentiment_analysis(text):
|
47 |
+
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
49 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
50 |
+
inputs = tokenizer(text, return_tensors="pt")
|
51 |
+
outputs = model(**inputs)
|
52 |
+
sentiment_scores = torch.softmax(outputs.logits, dim=1)
|
53 |
+
sentiment = "positive" if sentiment_scores[0, 1] > sentiment_scores[0, 0] else "negative"
|
54 |
+
return sentiment
|
55 |
+
|
56 |
+
language_options = [
|
57 |
+
"Spanish", "French (European)", "French (Canadian)", "Italian", "Ukrainian",
|
58 |
+
"Portuguese (Brazilian)", "Portuguese (European)", "Russian", "Chinese",
|
59 |
+
"Dutch", "German", "Arabic", "Hebrew", "Greek"
|
60 |
+
]
|
61 |
+
|
62 |
+
iface = gr.Interface(
|
63 |
+
[translate, generate_text, classify_text, sentiment_analysis],
|
64 |
+
inputs=[
|
65 |
+
gr.inputs.Textbox(lines=5, label="Enter text to translate:"),
|
66 |
+
gr.inputs.Dropdown(choices=language_options, label="Target Language"),
|
67 |
+
gr.inputs.Textbox(lines=5, label="Enter text for text generation:"),
|
68 |
+
gr.inputs.Textbox(lines=5, label="Enter text for text classification:"),
|
69 |
+
gr.inputs.Textbox(lines=5, label="Enter text for sentiment analysis:"),
|
70 |
+
],
|
71 |
+
outputs=[
|
72 |
+
gr.outputs.Textbox(label="Translated Text"),
|
73 |
+
gr.outputs.Textbox(label="Generated Text"),
|
74 |
+
gr.outputs.Textbox(label="Classification Result"),
|
75 |
+
gr.outputs.Textbox(label="Sentiment Result"),
|
76 |
+
],
|
77 |
+
)
|
78 |
+
|
79 |
+
iface.launch()
|