Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
# Load model and tokenizer | |
model_path = "model/SmallDisMedLM.pt" | |
model = torch.load(model_path, map_location='cpu') | |
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') | |
# Define UI elements with clear labels and spacing | |
st.title("Medical Chatbot 🩺") | |
st.header("Ask a question about your health:") | |
user_input = st.text_input("", placeholder="Type your query here...") | |
if st.button("Get Symptoms for a disease"): | |
with st.spinner("Generating response..."): | |
input_ids = tokenizer.encode(user_input, return_tensors='pt') | |
output = model.generate( | |
input_ids, | |
max_length=100, | |
num_return_sequences=1, | |
do_sample=True, | |
top_k=8, | |
top_p=0.95, | |
temperature=0.5, | |
repetition_penalty=1.2 | |
) | |
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) | |
st.success("Chatbot Response:") | |
st.write(decoded_output) | |
st.markdown("---") | |
st.info("Disclaimer: This is a Text Project for Small LLM.") | |
st.sidebar.header("About") | |
st.sidebar.write("This chatbot is powered by a GPT-2 language model trained on medical text data. This is a Text Project It aims to provide general information and Symptoms, but it should not be relied upon for diagnosis") | |
st.sidebar.header("Feedback") | |
st.sidebar.text_area("Please share any feedback or suggestions:") |