isurulkh's picture
Update app.py
060b6c4
import streamlit as st
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
# Load model and tokenizer
model_path = "model/SmallDisMedLM.pt"
model = torch.load(model_path, map_location='cpu')
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
# Define UI elements with clear labels and spacing
st.title("Medical Chatbot 🩺")
st.header("Ask a question about your health:")
user_input = st.text_input("", placeholder="Type your query here...")
if st.button("Get Symptoms for a disease"):
with st.spinner("Generating response..."):
input_ids = tokenizer.encode(user_input, return_tensors='pt')
output = model.generate(
input_ids,
max_length=100,
num_return_sequences=1,
do_sample=True,
top_k=8,
top_p=0.95,
temperature=0.5,
repetition_penalty=1.2
)
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True)
st.success("Chatbot Response:")
st.write(decoded_output)
st.markdown("---")
st.info("Disclaimer: This is a Text Project for Small LLM.")
st.sidebar.header("About")
st.sidebar.write("This chatbot is powered by a GPT-2 language model trained on medical text data. This is a Text Project It aims to provide general information and Symptoms, but it should not be relied upon for diagnosis")
st.sidebar.header("Feedback")
st.sidebar.text_area("Please share any feedback or suggestions:")