Konect-U-AI / app.py
Sean-Case
Explicitly installs required gradio version upon loading app
e78df68
raw
history blame
11.8 kB
# # Load in packages
# +
import os
os.system("pip uninstall -y gradio")
os.system("pip install gradio==3.42.0")
from typing import TypeVar
from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
import gradio as gr
from transformers import AutoTokenizer#, pipeline, TextIteratorStreamer
from dataclasses import asdict, dataclass
# Alternative model sources
from ctransformers import AutoModelForCausalLM#, AutoTokenizer
#PandasDataFrame: type[pd.core.frame.DataFrame]
PandasDataFrame = TypeVar('pd.core.frame.DataFrame')
# Disable cuda devices if necessary
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
#from chatfuncs.chatfuncs import *
import chatfuncs.ingest as ing
## Load preset embeddings, vectorstore, and model
embeddings_name = "thenlper/gte-base"
def load_embeddings(embeddings_name = "thenlper/gte-base"):
if embeddings_name == "hkunlp/instructor-large":
embeddings_func = HuggingFaceInstructEmbeddings(model_name=embeddings_name,
embed_instruction="Represent the paragraph for retrieval: ",
query_instruction="Represent the question for retrieving supporting documents: "
)
else:
embeddings_func = HuggingFaceEmbeddings(model_name=embeddings_name)
global embeddings
embeddings = embeddings_func
return embeddings
def get_faiss_store(faiss_vstore_folder,embeddings):
import zipfile
with zipfile.ZipFile(faiss_vstore_folder + '/' + faiss_vstore_folder + '.zip', 'r') as zip_ref:
zip_ref.extractall(faiss_vstore_folder)
faiss_vstore = FAISS.load_local(folder_path=faiss_vstore_folder, embeddings=embeddings)
os.remove(faiss_vstore_folder + "/index.faiss")
os.remove(faiss_vstore_folder + "/index.pkl")
global vectorstore
vectorstore = faiss_vstore
return vectorstore
import chatfuncs.chatfuncs as chatf
chatf.embeddings = load_embeddings(embeddings_name)
chatf.vectorstore = get_faiss_store(faiss_vstore_folder="faiss_embedding",embeddings=globals()["embeddings"])
model_type = "Flan Alpaca"
def load_model(model_type, CtransInitConfig_gpu=chatf.CtransInitConfig_gpu, CtransInitConfig_cpu=chatf.CtransInitConfig_cpu, torch_device=chatf.torch_device):
print("Loading model")
if model_type == "Orca Mini":
try:
model = AutoModelForCausalLM.from_pretrained('juanjgit/orca_mini_3B-GGUF', model_type='llama', model_file='orca-mini-3b.q4_0.gguf', **asdict(CtransInitConfig_gpu()))
except:
model = AutoModelForCausalLM.from_pretrained('juanjgit/orca_mini_3B-GGUF', model_type='llama', model_file='orca-mini-3b.q4_0.gguf', **asdict(CtransInitConfig_cpu()))
tokenizer = []
if model_type == "Flan Alpaca":
# Huggingface chat model
hf_checkpoint = 'declare-lab/flan-alpaca-large'
def create_hf_model(model_name):
from transformers import AutoModelForSeq2SeqLM, AutoModelForCausalLM
# model_id = model_name
if torch_device == "cuda":
if "flan" in model_name:
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, load_in_8bit=True, device_map="auto")
else:
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_8bit=True, device_map="auto")
else:
if "flan" in model_name:
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
else:
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length = chatf.context_length)
return model, tokenizer, model_type
model, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint)
chatf.model = model
chatf.tokenizer = tokenizer
chatf.model_type = model_type
print("Finished loading model: ", model_type)
return model_type
load_model(model_type, chatf.CtransInitConfig_gpu, chatf.CtransInitConfig_cpu, chatf.torch_device)
def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings):
print(f"> Total split documents: {len(docs_out)}")
print(docs_out)
vectorstore_func = FAISS.from_documents(documents=docs_out, embedding=embeddings)
chatf.vectorstore = vectorstore_func
out_message = "Document processing complete"
return out_message, vectorstore_func
# Gradio chat
block = gr.Blocks(theme = gr.themes.Base())#css=".gradio-container {background-color: black}")
with block:
ingest_text = gr.State()
ingest_metadata = gr.State()
ingest_docs = gr.State()
model_type_state = gr.State(model_type)
embeddings_state = gr.State(globals()["embeddings"])
vectorstore_state = gr.State(globals()["vectorstore"])
model_state = gr.State() # chatf.model (gives error)
tokenizer_state = gr.State() # chatf.tokenizer (gives error)
chat_history_state = gr.State()
instruction_prompt_out = gr.State()
gr.Markdown("<h1><center>Lightweight PDF / web page QA bot</center></h1>")
gr.Markdown("Chat with PDF or web page documents. The default is a small model (Flan Alpaca), that can only answer specific questions that are answered in the text. It cannot give overall impressions of, or summarise the document. The alternative (Orca Mini), can reason a little better, but is much slower (See advanced tab).\n\nBy default the Lambeth Borough Plan '[Lambeth 2030 : Our Future, Our Lambeth](https://www.lambeth.gov.uk/better-fairer-lambeth/projects/lambeth-2030-our-future-our-lambeth)' is loaded. If you want to talk about another document or web page, please select from the second tab. If switching topic, please click the 'Clear chat' button.\n\nCaution: This is a public app. Likes and dislike responses will be saved to disk to improve the model. Please ensure that the document you upload is not sensitive is any way as other users may see it! Also, please note that LLM chatbots may give incomplete or incorrect information, so please use with care.")
current_source = gr.Textbox(label="Current data source that is loaded into the app", value="Lambeth_2030-Our_Future_Our_Lambeth.pdf")
with gr.Tab("Chatbot"):
with gr.Row():
chat_height = 500
chatbot = gr.Chatbot(height=chat_height, avatar_images=('user.jfif', 'bot.jpg'),bubble_full_width = False)
sources = gr.HTML(value = "Source paragraphs where I looked for answers will appear here", height=chat_height)
with gr.Row():
message = gr.Textbox(
label="What's your question?",
lines=1,
)
with gr.Row():
submit = gr.Button(value="Send message", variant="secondary", scale = 1)
clear = gr.Button(value="Clear chat", variant="secondary", scale=0)
examples_set = gr.Radio(label="Examples for the Lambeth Borough Plan",
#value = "What were the five pillars of the previous borough plan?",
choices=["What were the five pillars of the previous borough plan?",
"What is the vision statement for Lambeth?",
"What are the commitments for Lambeth?",
"What are the 2030 outcomes for Lambeth?"])
current_topic = gr.Textbox(label="Feature currently disabled - Keywords related to current conversation topic.", placeholder="Keywords related to the conversation topic will appear here")
with gr.Tab("Load in a different PDF file or web page to chat"):
with gr.Accordion("PDF file", open = False):
in_pdf = gr.File(label="Upload pdf", file_count="multiple", file_types=['.pdf'])
load_pdf = gr.Button(value="Load in file", variant="secondary", scale=0)
with gr.Accordion("Web page", open = False):
with gr.Row():
in_web = gr.Textbox(label="Enter webpage url")
in_div = gr.Textbox(label="(Advanced) Webpage div for text extraction", value="p", placeholder="p")
load_web = gr.Button(value="Load in webpage", variant="secondary", scale=0)
ingest_embed_out = gr.Textbox(label="File/webpage preparation progress")
with gr.Tab("Advanced features"):
model_choice = gr.Radio(label="Choose a chat model", value="Flan Alpaca", choices = ["Flan Alpaca", "Orca Mini"])
gr.HTML(
"<center>This app is based on the models Flan Alpaca and Orca Mini. It powered by Gradio, Transformers, Ctransformers, and Langchain.</a></center>"
)
examples_set.change(fn=chatf.update_message, inputs=[examples_set], outputs=[message])
model_choice.change(fn=load_model, inputs=[model_choice], outputs = [model_type_state])
# Load in a pdf
load_pdf_click = load_pdf.click(ing.parse_file, inputs=[in_pdf], outputs=[ingest_text, current_source]).\
then(ing.text_to_docs, inputs=[ingest_text], outputs=[ingest_docs]).\
then(docs_to_faiss_save, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state]).\
then(chatf.hide_block, outputs = [examples_set])
# Load in a webpage
load_web_click = load_web.click(ing.parse_html, inputs=[in_web, in_div], outputs=[ingest_text, ingest_metadata, current_source]).\
then(ing.html_text_to_docs, inputs=[ingest_text, ingest_metadata], outputs=[ingest_docs]).\
then(docs_to_faiss_save, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state]).\
then(chatf.hide_block, outputs = [examples_set])
# Load in a webpage
# Click/enter to send message action
response_click = submit.click(chatf.create_full_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state, model_type_state], outputs=[chat_history_state, sources, instruction_prompt_out], queue=False, api_name="retrieval").\
then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\
then(chatf.produce_streaming_answer_chatbot, inputs=[chatbot, instruction_prompt_out, model_type_state], outputs=chatbot)
response_click.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\
then(chatf.add_inputs_answer_to_history,[message, chatbot, current_topic], [chat_history_state, current_topic]).\
then(lambda: chatf.restore_interactivity(), None, [message], queue=False)
response_enter = message.submit(chatf.create_full_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state, model_type_state], outputs=[chat_history_state, sources, instruction_prompt_out], queue=False).\
then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\
then(chatf.produce_streaming_answer_chatbot, [chatbot, instruction_prompt_out, model_type_state], chatbot)
response_enter.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\
then(chatf.add_inputs_answer_to_history,[message, chatbot, current_topic], [chat_history_state, current_topic]).\
then(lambda: chatf.restore_interactivity(), None, [message], queue=False)
# Clear box
clear.click(chatf.clear_chat, inputs=[chat_history_state, sources, message, current_topic], outputs=[chat_history_state, sources, message, current_topic])
clear.click(lambda: None, None, chatbot, queue=False)
chatbot.like(chatf.vote, [chat_history_state, instruction_prompt_out, model_type_state], None)
block.queue(concurrency_count=1).launch(debug=True)
# -