Spaces:
Runtime error
Runtime error
import re | |
import datetime | |
from typing import TypeVar, Dict, List, Tuple | |
import time | |
from itertools import compress | |
import pandas as pd | |
import numpy as np | |
# Model packages | |
import torch | |
from threading import Thread | |
from transformers import AutoTokenizer, pipeline, TextIteratorStreamer | |
# Alternative model sources | |
from ctransformers import AutoModelForCausalLM#, AutoTokenizer | |
from dataclasses import asdict, dataclass | |
# Langchain functions | |
from langchain.prompts import PromptTemplate | |
from langchain.vectorstores import FAISS | |
from langchain.retrievers import SVMRetriever | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.docstore.document import Document | |
# For keyword extraction | |
import nltk | |
nltk.download('wordnet') | |
from nltk.corpus import stopwords | |
from nltk.tokenize import RegexpTokenizer | |
from nltk.stem import WordNetLemmatizer | |
import keybert | |
# For Name Entity Recognition model | |
from span_marker import SpanMarkerModel | |
# For BM25 retrieval | |
from gensim.corpora import Dictionary | |
from gensim.models import TfidfModel, OkapiBM25Model | |
from gensim.similarities import SparseMatrixSimilarity | |
import gradio as gr | |
torch.cuda.empty_cache() | |
PandasDataFrame = TypeVar('pd.core.frame.DataFrame') | |
embeddings = None # global variable setup | |
vectorstore = None # global variable setup | |
model_type = None # global variable setup | |
max_memory_length = 0 # How long should the memory of the conversation last? | |
full_text = "" # Define dummy source text (full text) just to enable highlight function to load | |
model = [] # Define empty list for model functions to run | |
tokenizer = [] # Define empty list for model functions to run | |
## Highlight text constants | |
hlt_chunk_size = 15 | |
hlt_strat = [" ", ".", "!", "?", ":", "\n\n", "\n", ","] | |
hlt_overlap = 4 | |
## Initialise NER model ## | |
ner_model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-mbert-base-multinerd") | |
## Initialise keyword model ## | |
# Used to pull out keywords from chat history to add to user queries behind the scenes | |
kw_model = pipeline("feature-extraction", model="sentence-transformers/all-MiniLM-L6-v2") | |
if torch.cuda.is_available(): | |
torch_device = "cuda" | |
gpu_layers = 5 | |
else: | |
torch_device = "cpu" | |
gpu_layers = 0 | |
print("Running on device:", torch_device) | |
threads = 8 #torch.get_num_threads() | |
print("CPU threads:", threads) | |
# Flan Alpaca Model parameters | |
temperature: float = 0.1 | |
top_k: int = 3 | |
top_p: float = 1 | |
repetition_penalty: float = 1.05 | |
flan_alpaca_repetition_penalty: float = 1.3 | |
last_n_tokens: int = 64 | |
max_new_tokens: int = 125 | |
seed: int = 42 | |
reset: bool = False | |
stream: bool = True | |
threads: int = threads | |
batch_size:int = 1024 | |
context_length:int = 4096 | |
sample = True | |
# CtransGen model parameters | |
gpu_layers:int = 6 #gpu_layers For serving on Huggingface set to 0 as using free CPU instance | |
class CtransInitConfig_gpu: | |
temperature: float = temperature | |
top_k: int = top_k | |
top_p: float = top_p | |
repetition_penalty: float = repetition_penalty | |
last_n_tokens: int = last_n_tokens | |
max_new_tokens: int = max_new_tokens | |
seed: int = seed | |
reset: bool = reset | |
stream: bool = stream | |
threads: int = threads | |
batch_size:int = batch_size | |
context_length:int = context_length | |
gpu_layers:int = gpu_layers | |
#stop: list[str] = field(default_factory=lambda: [stop_string]) | |
class CtransInitConfig_cpu: | |
temperature: float = temperature | |
top_k: int = top_k | |
top_p: float = top_p | |
repetition_penalty: float = repetition_penalty | |
last_n_tokens: int = last_n_tokens | |
max_new_tokens: int = max_new_tokens | |
seed: int = seed | |
reset: bool = reset | |
stream: bool = stream | |
threads: int = threads | |
batch_size:int = batch_size | |
context_length:int = context_length | |
gpu_layers:int = 0 | |
#stop: list[str] = field(default_factory=lambda: [stop_string]) | |
class CtransGenGenerationConfig: | |
top_k: int = top_k | |
top_p: float = top_p | |
temperature: float = temperature | |
repetition_penalty: float = repetition_penalty | |
last_n_tokens: int = last_n_tokens | |
seed: int = seed | |
batch_size:int = batch_size | |
threads: int = threads | |
reset: bool = True | |
# Vectorstore funcs | |
def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings): | |
print(f"> Total split documents: {len(docs_out)}") | |
vectorstore_func = FAISS.from_documents(documents=docs_out, embedding=embeddings) | |
''' | |
#with open("vectorstore.pkl", "wb") as f: | |
#pickle.dump(vectorstore, f) | |
''' | |
#if Path(save_to).exists(): | |
# vectorstore_func.save_local(folder_path=save_to) | |
#else: | |
# os.mkdir(save_to) | |
# vectorstore_func.save_local(folder_path=save_to) | |
global vectorstore | |
vectorstore = vectorstore_func | |
out_message = "Document processing complete" | |
#print(out_message) | |
#print(f"> Saved to: {save_to}") | |
return out_message | |
# Prompt functions | |
def base_prompt_templates(model_type = "Flan Alpaca"): | |
#EXAMPLE_PROMPT = PromptTemplate( | |
# template="\nCONTENT:\n\n{page_content}\n\nSOURCE: {source}\n\n", | |
# input_variables=["page_content", "source"], | |
#) | |
CONTENT_PROMPT = PromptTemplate( | |
template="{page_content}\n\n",#\n\nSOURCE: {source}\n\n", | |
input_variables=["page_content"] | |
) | |
# The main prompt: | |
instruction_prompt_template_alpaca_quote = """### Instruction: | |
Quote directly from the SOURCE below that best answers the QUESTION. Only quote full sentences in the correct order. If you cannot find an answer, start your response with "My best guess is: ". | |
CONTENT: {summaries} | |
QUESTION: {question} | |
Response:""" | |
instruction_prompt_template_alpaca = """### Instruction: | |
### User: | |
Answer the QUESTION using information from the following CONTENT. | |
CONTENT: {summaries} | |
QUESTION: {question} | |
Response:""" | |
instruction_prompt_template_orca = """ | |
### System: | |
You are an AI assistant that follows instruction extremely well. Help as much as you can. | |
### User: | |
Answer the QUESTION with a short response using information from the following CONTENT. | |
CONTENT: {summaries} | |
QUESTION: {question} | |
### Response:""" | |
instruction_prompt_mistral_orca = """<|im_start|>system\n | |
You are an AI assistant that follows instruction extremely well. Help as much as you can. | |
<|im_start|>user\n | |
Answer the QUESTION using information from the following CONTENT. Respond with short answers that directly answer the question. | |
CONTENT: {summaries} | |
QUESTION: {question}\n | |
<|im_end|>""" | |
if model_type == "Flan Alpaca": | |
INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_template_alpaca, input_variables=['question', 'summaries']) | |
elif model_type == "Orca Mini": | |
INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_template_orca, input_variables=['question', 'summaries']) | |
return INSTRUCTION_PROMPT, CONTENT_PROMPT | |
def generate_expanded_prompt(inputs: Dict[str, str], instruction_prompt, content_prompt, extracted_memory, vectorstore, embeddings): # , | |
question = inputs["question"] | |
chat_history = inputs["chat_history"] | |
new_question_kworded = adapt_q_from_chat_history(question, chat_history, extracted_memory) # new_question_keywords, | |
docs_keep_as_doc, doc_df, docs_keep_out = hybrid_retrieval(new_question_kworded, vectorstore, embeddings, k_val = 5, out_passages = 2, | |
vec_score_cut_off = 1, vec_weight = 1, bm25_weight = 1, svm_weight = 1)#, | |
#vectorstore=globals()["vectorstore"], embeddings=globals()["embeddings"]) | |
# Expand the found passages to the neighbouring context | |
docs_keep_as_doc, doc_df = get_expanded_passages(vectorstore, docs_keep_out, width=1) | |
if docs_keep_as_doc == []: | |
{"answer": "I'm sorry, I couldn't find a relevant answer to this question.", "sources":"I'm sorry, I couldn't find a relevant source for this question."} | |
# Build up sources content to add to user display | |
doc_df['meta_clean'] = [f"<b>{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}</b>" for d in doc_df['metadata']] | |
doc_df['content_meta'] = doc_df['meta_clean'].astype(str) + ".<br><br>" + doc_df['page_content'].astype(str) | |
modified_page_content = [f" SOURCE {i+1} - {word}" for i, word in enumerate(doc_df['page_content'])] | |
docs_content_string = ''.join(modified_page_content) | |
sources_docs_content_string = '<br><br>'.join(doc_df['content_meta'])#.replace(" "," ")#.strip() | |
instruction_prompt_out = instruction_prompt.format(question=new_question_kworded, summaries=docs_content_string) | |
print('Final prompt is: ') | |
print(instruction_prompt_out) | |
return instruction_prompt_out, sources_docs_content_string, new_question_kworded | |
def create_full_prompt(user_input, history, extracted_memory, vectorstore, embeddings, model_type): | |
#if chain_agent is None: | |
# history.append((user_input, "Please click the button to submit the Huggingface API key before using the chatbot (top right)")) | |
# return history, history, "", "" | |
print("\n==== date/time: " + str(datetime.datetime.now()) + " ====") | |
print("User input: " + user_input) | |
history = history or [] | |
# Create instruction prompt | |
instruction_prompt, content_prompt = base_prompt_templates(model_type=model_type) | |
instruction_prompt_out, docs_content_string, new_question_kworded =\ | |
generate_expanded_prompt({"question": user_input, "chat_history": history}, #vectorstore, | |
instruction_prompt, content_prompt, extracted_memory, vectorstore, embeddings) | |
history.append(user_input) | |
print("Output history is:") | |
print(history) | |
return history, docs_content_string, instruction_prompt_out | |
# Chat functions | |
def produce_streaming_answer_chatbot(history, full_prompt, model_type): | |
#print("Model type is: ", model_type) | |
if model_type == "Flan Alpaca": | |
# Get the model and tokenizer, and tokenize the user text. | |
model_inputs = tokenizer(text=full_prompt, return_tensors="pt", return_attention_mask=False).to(torch_device) # return_attention_mask=False was added | |
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer | |
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread. | |
streamer = TextIteratorStreamer(tokenizer, timeout=120., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=sample, | |
repetition_penalty=flan_alpaca_repetition_penalty, | |
top_p=top_p, | |
temperature=temperature, | |
top_k=top_k | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
# Pull the generated text from the streamer, and update the model output. | |
start = time.time() | |
NUM_TOKENS=0 | |
print('-'*4+'Start Generation'+'-'*4) | |
history[-1][1] = "" | |
for new_text in streamer: | |
if new_text == None: new_text = "" | |
history[-1][1] += new_text | |
NUM_TOKENS+=1 | |
yield history | |
time_generate = time.time() - start | |
print('\n') | |
print('-'*4+'End Generation'+'-'*4) | |
print(f'Num of generated tokens: {NUM_TOKENS}') | |
print(f'Time for complete generation: {time_generate}s') | |
print(f'Tokens per secound: {NUM_TOKENS/time_generate}') | |
print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms') | |
elif model_type == "Orca Mini": | |
tokens = model.tokenize(full_prompt) | |
# Pull the generated text from the streamer, and update the model output. | |
start = time.time() | |
NUM_TOKENS=0 | |
print('-'*4+'Start Generation'+'-'*4) | |
history[-1][1] = "" | |
for new_text in model.generate(tokens, **asdict(CtransGenGenerationConfig())): #CtransGen_generate(prompt=full_prompt)#, config=CtransGenGenerationConfig()): # #top_k=top_k, temperature=temperature, repetition_penalty=repetition_penalty, | |
if new_text == None: new_text = "" | |
history[-1][1] += model.detokenize(new_text) #new_text | |
NUM_TOKENS+=1 | |
yield history | |
time_generate = time.time() - start | |
print('\n') | |
print('-'*4+'End Generation'+'-'*4) | |
print(f'Num of generated tokens: {NUM_TOKENS}') | |
print(f'Time for complete generation: {time_generate}s') | |
print(f'Tokens per secound: {NUM_TOKENS/time_generate}') | |
print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms') | |
# Chat helper functions | |
def adapt_q_from_chat_history(question, chat_history, extracted_memory, keyword_model=""):#keyword_model): # new_question_keywords, | |
chat_history_str, chat_history_first_q, chat_history_first_ans, max_memory_length = _get_chat_history(chat_history) | |
if chat_history_str: | |
# Keyword extraction is now done in the add_inputs_to_history function | |
extracted_memory = extracted_memory#remove_q_stopwords(str(chat_history_first_q) + " " + str(chat_history_first_ans)) | |
new_question_kworded = str(extracted_memory) + ". " + question #+ " " + new_question_keywords | |
#extracted_memory + " " + question | |
else: | |
new_question_kworded = question #new_question_keywords | |
#print("Question output is: " + new_question_kworded) | |
return new_question_kworded | |
def create_doc_df(docs_keep_out): | |
# Extract content and metadata from 'winning' passages. | |
content=[] | |
meta=[] | |
meta_url=[] | |
page_section=[] | |
score=[] | |
for item in docs_keep_out: | |
content.append(item[0].page_content) | |
meta.append(item[0].metadata) | |
meta_url.append(item[0].metadata['source']) | |
page_section.append(item[0].metadata['page_section']) | |
score.append(item[1]) | |
# Create df from 'winning' passages | |
doc_df = pd.DataFrame(list(zip(content, meta, page_section, meta_url, score)), | |
columns =['page_content', 'metadata', 'page_section', 'meta_url', 'score']) | |
docs_content = doc_df['page_content'].astype(str) | |
doc_df['full_url'] = "https://" + doc_df['meta_url'] | |
return doc_df | |
def hybrid_retrieval(new_question_kworded, vectorstore, embeddings, k_val, out_passages, | |
vec_score_cut_off, vec_weight, bm25_weight, svm_weight): # ,vectorstore, embeddings | |
#vectorstore=globals()["vectorstore"] | |
#embeddings=globals()["embeddings"] | |
docs = vectorstore.similarity_search_with_score(new_question_kworded, k=k_val) | |
print("Docs from similarity search:") | |
print(docs) | |
# Keep only documents with a certain score | |
docs_len = [len(x[0].page_content) for x in docs] | |
docs_scores = [x[1] for x in docs] | |
# Only keep sources that are sufficiently relevant (i.e. similarity search score below threshold below) | |
score_more_limit = pd.Series(docs_scores) < vec_score_cut_off | |
docs_keep = list(compress(docs, score_more_limit)) | |
if docs_keep == []: | |
docs_keep_as_doc = [] | |
docs_content = [] | |
docs_url = [] | |
return docs_keep_as_doc, docs_content, docs_url | |
# Only keep sources that are at least 100 characters long | |
length_more_limit = pd.Series(docs_len) >= 100 | |
docs_keep = list(compress(docs_keep, length_more_limit)) | |
if docs_keep == []: | |
docs_keep_as_doc = [] | |
docs_content = [] | |
docs_url = [] | |
return docs_keep_as_doc, docs_content, docs_url | |
docs_keep_as_doc = [x[0] for x in docs_keep] | |
docs_keep_length = len(docs_keep_as_doc) | |
if docs_keep_length == 1: | |
content=[] | |
meta_url=[] | |
score=[] | |
for item in docs_keep: | |
content.append(item[0].page_content) | |
meta_url.append(item[0].metadata['source']) | |
score.append(item[1]) | |
# Create df from 'winning' passages | |
doc_df = pd.DataFrame(list(zip(content, meta_url, score)), | |
columns =['page_content', 'meta_url', 'score']) | |
docs_content = doc_df['page_content'].astype(str) | |
docs_url = doc_df['meta_url'] | |
return docs_keep_as_doc, docs_content, docs_url | |
# Check for if more docs are removed than the desired output | |
if out_passages > docs_keep_length: | |
out_passages = docs_keep_length | |
k_val = docs_keep_length | |
vec_rank = [*range(1, docs_keep_length+1)] | |
vec_score = [(docs_keep_length/x)*vec_weight for x in vec_rank] | |
# 2nd level check on retrieved docs with BM25 | |
content_keep=[] | |
for item in docs_keep: | |
content_keep.append(item[0].page_content) | |
corpus = corpus = [doc.lower().split() for doc in content_keep] | |
dictionary = Dictionary(corpus) | |
bm25_model = OkapiBM25Model(dictionary=dictionary) | |
bm25_corpus = bm25_model[list(map(dictionary.doc2bow, corpus))] | |
bm25_index = SparseMatrixSimilarity(bm25_corpus, num_docs=len(corpus), num_terms=len(dictionary), | |
normalize_queries=False, normalize_documents=False) | |
query = new_question_kworded.lower().split() | |
tfidf_model = TfidfModel(dictionary=dictionary, smartirs='bnn') # Enforce binary weighting of queries | |
tfidf_query = tfidf_model[dictionary.doc2bow(query)] | |
similarities = np.array(bm25_index[tfidf_query]) | |
#print(similarities) | |
temp = similarities.argsort() | |
ranks = np.arange(len(similarities))[temp.argsort()][::-1] | |
# Pair each index with its corresponding value | |
pairs = list(zip(ranks, docs_keep_as_doc)) | |
# Sort the pairs by the indices | |
pairs.sort() | |
# Extract the values in the new order | |
bm25_result = [value for ranks, value in pairs] | |
bm25_rank=[] | |
bm25_score = [] | |
for vec_item in docs_keep: | |
x = 0 | |
for bm25_item in bm25_result: | |
x = x + 1 | |
if bm25_item.page_content == vec_item[0].page_content: | |
bm25_rank.append(x) | |
bm25_score.append((docs_keep_length/x)*bm25_weight) | |
# 3rd level check on retrieved docs with SVM retriever | |
svm_retriever = SVMRetriever.from_texts(content_keep, embeddings, k = k_val) | |
svm_result = svm_retriever.get_relevant_documents(new_question_kworded) | |
svm_rank=[] | |
svm_score = [] | |
for vec_item in docs_keep: | |
x = 0 | |
for svm_item in svm_result: | |
x = x + 1 | |
if svm_item.page_content == vec_item[0].page_content: | |
svm_rank.append(x) | |
svm_score.append((docs_keep_length/x)*svm_weight) | |
## Calculate final score based on three ranking methods | |
final_score = [a + b + c for a, b, c in zip(vec_score, bm25_score, svm_score)] | |
final_rank = [sorted(final_score, reverse=True).index(x)+1 for x in final_score] | |
# Force final_rank to increment by 1 each time | |
final_rank = list(pd.Series(final_rank).rank(method='first')) | |
#print("final rank: " + str(final_rank)) | |
#print("out_passages: " + str(out_passages)) | |
best_rank_index_pos = [] | |
for x in range(1,out_passages+1): | |
try: | |
best_rank_index_pos.append(final_rank.index(x)) | |
except IndexError: # catch the error | |
pass | |
# Adjust best_rank_index_pos to | |
best_rank_pos_series = pd.Series(best_rank_index_pos) | |
docs_keep_out = [docs_keep[i] for i in best_rank_index_pos] | |
# Keep only 'best' options | |
docs_keep_as_doc = [x[0] for x in docs_keep_out] | |
# Make df of best options | |
doc_df = create_doc_df(docs_keep_out) | |
return docs_keep_as_doc, doc_df, docs_keep_out | |
def get_expanded_passages(vectorstore, docs, width): | |
""" | |
Extracts expanded passages based on given documents and a width for context. | |
Parameters: | |
- vectorstore: The primary data source. | |
- docs: List of documents to be expanded. | |
- width: Number of documents to expand around a given document for context. | |
Returns: | |
- expanded_docs: List of expanded Document objects. | |
- doc_df: DataFrame representation of expanded_docs. | |
""" | |
from collections import defaultdict | |
def get_docs_from_vstore(vectorstore): | |
vector = vectorstore.docstore._dict | |
return list(vector.items()) | |
def extract_details(docs_list): | |
docs_list_out = [tup[1] for tup in docs_list] | |
content = [doc.page_content for doc in docs_list_out] | |
meta = [doc.metadata for doc in docs_list_out] | |
return ''.join(content), meta[0], meta[-1] | |
def get_parent_content_and_meta(vstore_docs, width, target): | |
target_range = range(max(0, target - width), min(len(vstore_docs), target + width + 1)) | |
parent_vstore_out = [vstore_docs[i] for i in target_range] | |
content_str_out, meta_first_out, meta_last_out = [], [], [] | |
for _ in parent_vstore_out: | |
content_str, meta_first, meta_last = extract_details(parent_vstore_out) | |
content_str_out.append(content_str) | |
meta_first_out.append(meta_first) | |
meta_last_out.append(meta_last) | |
return content_str_out, meta_first_out, meta_last_out | |
def merge_dicts_except_source(d1, d2): | |
merged = {} | |
for key in d1: | |
if key != "source": | |
merged[key] = str(d1[key]) + " to " + str(d2[key]) | |
else: | |
merged[key] = d1[key] # or d2[key], based on preference | |
return merged | |
def merge_two_lists_of_dicts(list1, list2): | |
return [merge_dicts_except_source(d1, d2) for d1, d2 in zip(list1, list2)] | |
# Step 1: Filter vstore_docs | |
vstore_docs = get_docs_from_vstore(vectorstore) | |
doc_sources = {doc.metadata['source'] for doc, _ in docs} | |
vstore_docs = [(k, v) for k, v in vstore_docs if v.metadata.get('source') in doc_sources] | |
# Step 2: Group by source and proceed | |
vstore_by_source = defaultdict(list) | |
for k, v in vstore_docs: | |
vstore_by_source[v.metadata['source']].append((k, v)) | |
expanded_docs = [] | |
for doc, score in docs: | |
search_source = doc.metadata['source'] | |
search_section = doc.metadata['page_section'] | |
parent_vstore_meta_section = [doc.metadata['page_section'] for _, doc in vstore_by_source[search_source]] | |
search_index = parent_vstore_meta_section.index(search_section) if search_section in parent_vstore_meta_section else -1 | |
content_str, meta_first, meta_last = get_parent_content_and_meta(vstore_by_source[search_source], width, search_index) | |
meta_full = merge_two_lists_of_dicts(meta_first, meta_last) | |
expanded_doc = (Document(page_content=content_str[0], metadata=meta_full[0]), score) | |
expanded_docs.append(expanded_doc) | |
doc_df = create_doc_df(expanded_docs) # Assuming you've defined the 'create_doc_df' function elsewhere | |
return expanded_docs, doc_df | |
def highlight_found_text(search_text: str, full_text: str, hlt_chunk_size:int=hlt_chunk_size, hlt_strat:List=hlt_strat, hlt_overlap:int=hlt_overlap) -> str: | |
""" | |
Highlights occurrences of search_text within full_text. | |
Parameters: | |
- search_text (str): The text to be searched for within full_text. | |
- full_text (str): The text within which search_text occurrences will be highlighted. | |
Returns: | |
- str: A string with occurrences of search_text highlighted. | |
Example: | |
>>> highlight_found_text("world", "Hello, world! This is a test. Another world awaits.") | |
'Hello, <mark style="color:black;">world</mark>! This is a test. Another <mark style="color:black;">world</mark> awaits.' | |
""" | |
def extract_text_from_input(text, i=0): | |
if isinstance(text, str): | |
return text.replace(" ", " ").strip() | |
elif isinstance(text, list): | |
return text[i][0].replace(" ", " ").strip() | |
else: | |
return "" | |
def extract_search_text_from_input(text): | |
if isinstance(text, str): | |
return text.replace(" ", " ").strip() | |
elif isinstance(text, list): | |
return text[-1][1].replace(" ", " ").strip() | |
else: | |
return "" | |
full_text = extract_text_from_input(full_text) | |
search_text = extract_search_text_from_input(search_text) | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=hlt_chunk_size, | |
separators=hlt_strat, | |
chunk_overlap=hlt_overlap, | |
) | |
sections = text_splitter.split_text(search_text) | |
found_positions = {} | |
for x in sections: | |
text_start_pos = 0 | |
while text_start_pos != -1: | |
text_start_pos = full_text.find(x, text_start_pos) | |
if text_start_pos != -1: | |
found_positions[text_start_pos] = text_start_pos + len(x) | |
text_start_pos += 1 | |
# Combine overlapping or adjacent positions | |
sorted_starts = sorted(found_positions.keys()) | |
combined_positions = [] | |
if sorted_starts: | |
current_start, current_end = sorted_starts[0], found_positions[sorted_starts[0]] | |
for start in sorted_starts[1:]: | |
if start <= (current_end + 10): | |
current_end = max(current_end, found_positions[start]) | |
else: | |
combined_positions.append((current_start, current_end)) | |
current_start, current_end = start, found_positions[start] | |
combined_positions.append((current_start, current_end)) | |
# Construct pos_tokens | |
pos_tokens = [] | |
prev_end = 0 | |
for start, end in combined_positions: | |
if end-start > 15: # Only combine if there is a significant amount of matched text. Avoids picking up single words like 'and' etc. | |
pos_tokens.append(full_text[prev_end:start]) | |
pos_tokens.append('<mark style="color:black;">' + full_text[start:end] + '</mark>') | |
prev_end = end | |
pos_tokens.append(full_text[prev_end:]) | |
return "".join(pos_tokens) | |
# # Chat history functions | |
def clear_chat(chat_history_state, sources, chat_message, current_topic): | |
chat_history_state = [] | |
sources = '' | |
chat_message = '' | |
current_topic = '' | |
return chat_history_state, sources, chat_message, current_topic | |
def _get_chat_history(chat_history: List[Tuple[str, str]], max_memory_length:int = max_memory_length): # Limit to last x interactions only | |
if (not chat_history) | (max_memory_length == 0): | |
chat_history = [] | |
if len(chat_history) > max_memory_length: | |
chat_history = chat_history[-max_memory_length:] | |
#print(chat_history) | |
first_q = "" | |
first_ans = "" | |
for human_s, ai_s in chat_history: | |
first_q = human_s | |
first_ans = ai_s | |
#print("Text to keyword extract: " + first_q + " " + first_ans) | |
break | |
conversation = "" | |
for human_s, ai_s in chat_history: | |
human = f"Human: " + human_s | |
ai = f"Assistant: " + ai_s | |
conversation += "\n" + "\n".join([human, ai]) | |
return conversation, first_q, first_ans, max_memory_length | |
def add_inputs_answer_to_history(user_message, history, current_topic): | |
if history is None: | |
history = [("","")] | |
#history.append((user_message, [-1])) | |
chat_history_str, chat_history_first_q, chat_history_first_ans, max_memory_length = _get_chat_history(history) | |
# Only get the keywords for the first question and response, or do it every time if over 'max_memory_length' responses in the conversation | |
if (len(history) == 1) | (len(history) > max_memory_length): | |
#print("History after appending is:") | |
#print(history) | |
first_q_and_first_ans = str(chat_history_first_q) + " " + str(chat_history_first_ans) | |
#ner_memory = remove_q_ner_extractor(first_q_and_first_ans) | |
keywords = keybert_keywords(first_q_and_first_ans, n = 8, kw_model=kw_model) | |
#keywords.append(ner_memory) | |
# Remove duplicate words while preserving order | |
ordered_tokens = set() | |
result = [] | |
for word in keywords: | |
if word not in ordered_tokens: | |
ordered_tokens.add(word) | |
result.append(word) | |
extracted_memory = ' '.join(result) | |
else: extracted_memory=current_topic | |
print("Extracted memory is:") | |
print(extracted_memory) | |
return history, extracted_memory | |
# Keyword functions | |
def remove_q_stopwords(question): # Remove stopwords from question. Not used at the moment | |
# Prepare keywords from question by removing stopwords | |
text = question.lower() | |
# Remove numbers | |
text = re.sub('[0-9]', '', text) | |
tokenizer = RegexpTokenizer(r'\w+') | |
text_tokens = tokenizer.tokenize(text) | |
#text_tokens = word_tokenize(text) | |
tokens_without_sw = [word for word in text_tokens if not word in stopwords] | |
# Remove duplicate words while preserving order | |
ordered_tokens = set() | |
result = [] | |
for word in tokens_without_sw: | |
if word not in ordered_tokens: | |
ordered_tokens.add(word) | |
result.append(word) | |
new_question_keywords = ' '.join(result) | |
return new_question_keywords | |
def remove_q_ner_extractor(question): | |
predict_out = ner_model.predict(question) | |
predict_tokens = [' '.join(v for k, v in d.items() if k == 'span') for d in predict_out] | |
# Remove duplicate words while preserving order | |
ordered_tokens = set() | |
result = [] | |
for word in predict_tokens: | |
if word not in ordered_tokens: | |
ordered_tokens.add(word) | |
result.append(word) | |
new_question_keywords = ' '.join(result).lower() | |
return new_question_keywords | |
def apply_lemmatize(text, wnl=WordNetLemmatizer()): | |
def prep_for_lemma(text): | |
# Remove numbers | |
text = re.sub('[0-9]', '', text) | |
print(text) | |
tokenizer = RegexpTokenizer(r'\w+') | |
text_tokens = tokenizer.tokenize(text) | |
#text_tokens = word_tokenize(text) | |
return text_tokens | |
tokens = prep_for_lemma(text) | |
def lem_word(word): | |
if len(word) > 3: out_word = wnl.lemmatize(word) | |
else: out_word = word | |
return out_word | |
return [lem_word(token) for token in tokens] | |
def keybert_keywords(text, n, kw_model): | |
tokens_lemma = apply_lemmatize(text) | |
lemmatised_text = ' '.join(tokens_lemma) | |
keywords_text = keybert.KeyBERT(model=kw_model).extract_keywords(lemmatised_text, stop_words='english', top_n=n, | |
keyphrase_ngram_range=(1, 1)) | |
keywords_list = [item[0] for item in keywords_text] | |
return keywords_list | |
# Gradio functions | |
def turn_off_interactivity(user_message, history): | |
return gr.update(value="", interactive=False), history + [[user_message, None]] | |
def restore_interactivity(): | |
return gr.update(interactive=True) | |
def update_message(dropdown_value): | |
return gr.Textbox.update(value=dropdown_value) | |
def hide_block(): | |
return gr.Radio.update(visible=False) | |
# Vote function | |
def vote(data: gr.LikeData, chat_history, instruction_prompt_out, model_type): | |
import os | |
import pandas as pd | |
chat_history_last = str(str(chat_history[-1][0]) + " - " + str(chat_history[-1][1])) | |
response_df = pd.DataFrame(data={"thumbs_up":data.liked, | |
"chosen_response":data.value, | |
"input_prompt":instruction_prompt_out, | |
"chat_history":chat_history_last, | |
"model_type": model_type, | |
"date_time": pd.Timestamp.now()}, index=[0]) | |
if data.liked: | |
print("You upvoted this response: " + data.value) | |
if os.path.isfile("thumbs_up_data.csv"): | |
existing_thumbs_up_df = pd.read_csv("thumbs_up_data.csv") | |
thumbs_up_df_concat = pd.concat([existing_thumbs_up_df, response_df], ignore_index=True).drop("Unnamed: 0",axis=1, errors="ignore") | |
thumbs_up_df_concat.to_csv("thumbs_up_data.csv") | |
else: | |
response_df.to_csv("thumbs_up_data.csv") | |
else: | |
print("You downvoted this response: " + data.value) | |
if os.path.isfile("thumbs_down_data.csv"): | |
existing_thumbs_down_df = pd.read_csv("thumbs_down_data.csv") | |
thumbs_down_df_concat = pd.concat([existing_thumbs_down_df, response_df], ignore_index=True).drop("Unnamed: 0",axis=1, errors="ignore") | |
thumbs_down_df_concat.to_csv("thumbs_down_data.csv") | |
else: | |
response_df.to_csv("thumbs_down_data.csv") | |