Aiden4801 commited on
Commit
ca00702
1 Parent(s): fe67a4d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +207 -60
app.py CHANGED
@@ -1,64 +1,211 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import AutoTokenizer, T5ForConditionalGeneration, pipeline
4
+ from sentence_transformers import SentenceTransformer, util
5
+ import random
6
+ import re
7
+ import nltk
8
+ from nltk.tokenize import sent_tokenize
9
+ import warnings
10
+ from transformers import logging
11
+ import os
12
+ import tensorflow as tf
13
+ import requests
14
+
15
+ os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
16
+ os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
17
+ warnings.filterwarnings("ignore", category=FutureWarning)
18
+ warnings.filterwarnings("ignore", category=UserWarning)
19
+ warnings.filterwarnings("ignore")
20
+ logging.set_verbosity_error()
21
+ tf.get_logger().setLevel('ERROR')
22
+
23
+ nltk.download('punkt')
24
+ GROQ_API_KEY="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"
25
+
26
+
27
+ class TextEnhancer:
28
+ def __init__(self):
29
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
30
+ print(self.device)
31
+ self.paraphrase_tokenizer = AutoTokenizer.from_pretrained("prithivida/parrot_paraphraser_on_T5")
32
+ self.paraphrase_model = T5ForConditionalGeneration.from_pretrained("prithivida/parrot_paraphraser_on_T5").to(self.device)
33
+ print("paraphraser loaded")
34
+ self.grammar_pipeline = pipeline(
35
+ "text2text-generation",
36
+ model="Grammarly/coedit-large",
37
+ device=0 if self.device == "cuda" else -1
38
+ )
39
+ print("grammar check loaded")
40
+ self.similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2').to(self.device)
41
+ print("sementics model loaded")
42
+ def _evaluate_with_groq(self, passage=""):
43
+ if not passage:
44
+ raise ValueError("Input passage cannot be empty.")
45
+
46
+ # Groq API setup
47
+ headers = {
48
+ "Authorization": f"Bearer {GROQ_API_KEY}", # Replace GROQ_API_KEY with your actual API key.
49
+ "Content-Type": "application/json"
50
+ }
51
+ payload = {
52
+ "model": "llama3-70b-8192",
53
+ "messages": [
54
+ {
55
+ "role": "system",
56
+ "content": "Paraphrase this sentence to better suit it as an introductory sentence to a student's Statement of purpose. Ensure that the vocabulary and grammar is upto par. ONLY return the raw paraphrased sentence and nothing else.IF IT IS a empty string, return empty string "
57
+ },
58
+ {
59
+ "role": "user",
60
+ "content": f"Here is the passage: {passage}"
61
+ }
62
+ ],
63
+ "temperature": 1.0,
64
+ "max_tokens": 8192
65
+ }
66
+
67
+ # Sending request to Groq API
68
+ print("Sending request to Groq API...")
69
+ response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=payload, headers=headers)
70
+ print("Response received.")
71
+
72
+ # Handling the response
73
+ if response.status_code == 200:
74
+ data = response.json()
75
+ try:
76
+ segmented_text = data.get("choices", [{}])[0].get("message", {}).get("content", "")
77
+ print("sentence paraphrase processed successfully.")
78
+ print(segmented_text)
79
+ return segmented_text
80
+ except (IndexError, KeyError) as e:
81
+ raise ValueError(f"Unexpected response structure from Groq API. Error: {str(e)}")
82
+ else:
83
+ raise ValueError(f"Groq API error: {response.status_code}, {response.text}")
84
+
85
+ def _correct_formatting(self, sentence):
86
+ cleaned_sentence = re.sub(r'([.,!?])\1+', r'\1', sentence)
87
+ cleaned_sentence = cleaned_sentence.strip()
88
+ return cleaned_sentence
89
+ def enhance_text(self, text, min_similarity=0.8, max_variations=3):
90
+ sent=0
91
+ enhanced_sentences = []
92
+ sentences = sent_tokenize(text)
93
+ total_words = sum(len(sentence.split()) for sentence in sentences)
94
+ print(f"generated: {total_words}")
95
+ for sentence in sentences:
96
+ if not sentence.strip():
97
+ continue
98
+ sent+=1
99
+
100
+ inputs = self.paraphrase_tokenizer(
101
+ f"paraphrase: {sentence}",
102
+ return_tensors="pt",
103
+ padding=True,
104
+ max_length=150,
105
+ truncation=True
106
+ ).to(self.device)
107
+
108
+ outputs = self.paraphrase_model.generate(
109
+ **inputs,
110
+ max_length=len(sentence.split()) + 20,
111
+ num_return_sequences=max_variations,
112
+ num_beams=max_variations,
113
+ temperature=0.7
114
+ )
115
+
116
+
117
+ paraphrases = [
118
+ self.paraphrase_tokenizer.decode(output, skip_special_tokens=True)
119
+ for output in outputs
120
+ ]
121
+
122
+ sentence_embedding = self.similarity_model.encode(sentence)
123
+ paraphrase_embeddings = self.similarity_model.encode(paraphrases)
124
+ similarities = util.cos_sim(sentence_embedding, paraphrase_embeddings)
125
+
126
+ valid_paraphrases = [
127
+ para for para, sim in zip(paraphrases, similarities[0])
128
+ if sim >= min_similarity
129
+ ]
130
+ if sent in {1, len(sentences)} and valid_paraphrases:
131
+ gemini_feedback = self._evaluate_with_groq(valid_paraphrases[0])
132
+ if gemini_feedback.strip():
133
+ valid_paraphrases[0] = gemini_feedback.strip()
134
+
135
+ if valid_paraphrases:
136
+ corrected = self.grammar_pipeline(
137
+ valid_paraphrases[0],
138
+ max_length=150,
139
+ num_return_sequences=1
140
+ )[0]["generated_text"]
141
+
142
+ corrected = self._humanize_text(corrected)
143
+ corrected=self._correct_formatting(corrected)
144
+ enhanced_sentences.append(corrected)
145
+ else:
146
+ sentence=self._correct_formatting(sentence)
147
+ enhanced_sentences.append(sentence)
148
+
149
+ enhanced_text = ". ".join(sentence.rstrip(".") for sentence in enhanced_sentences) + "."
150
+ return enhanced_text
151
+ def _humanize_text(self, text):
152
+
153
+ contractions = {"can't": "cannot", "won't": "will not", "I'm": "I am", "it's": "it is"}
154
+ words = text.split()
155
+ text = " ".join([contractions.get(word, word) if random.random() > 0.9 else word for word in words])
156
+
157
+
158
+ if random.random() > 0.7:
159
+ text = text.replace(" and ", ", and ")
160
+
161
+ # Minor variations in sentence structure
162
+ if random.random() > 0.5:
163
+ text = text.replace(" is ", " happens to be ")
164
+
165
+ return text
166
+
167
+
168
+ def create_interface():
169
+ enhancer = TextEnhancer()
170
+
171
+ def process_text(text, similarity_threshold=0.75):
172
+ try:
173
+ enhanced = enhancer.enhance_text(
174
+ text,
175
+ min_similarity=similarity_threshold / 100,
176
+ max_variations=10
177
+ )
178
+ print("grammar enhanced")
179
+ return enhanced
180
+ except Exception as e:
181
+ return f"Error: {str(e)}"
182
+
183
+ interface = gr.Blocks()
184
+ with interface:
185
+ with gr.Row(elem_id="header", variant="panel"):
186
+ gr.HTML("""
187
+ <div style="display: flex; align-items: center; justify-content: center; gap: 10px; margin-bottom: 20px;">
188
+ <img src="https://raw.githubusercontent.com/juicjaane/blueai/main/logo_2.jpg" style="width: 50px; height: 50px;">
189
+ <h1 style="color: gold; font-size: 2em; margin: 0;">Konect U</h1>
190
+ </div>
191
+ """)
192
+
193
+ with gr.Row():
194
+ with gr.Column(scale=1):
195
+ gr.Markdown("### Your SoP")
196
+ input_text = gr.Textbox(label="Input", placeholder="Enter SoP to Paraphrase...", lines=10)
197
+
198
+ submit_button = gr.Button("Paraphrase")
199
+
200
+ with gr.Column(scale=1):
201
+ gr.Markdown("### Paraphrased SoP")
202
+ enhanced_text = gr.Textbox(label="SoP", lines=10)
203
+
204
+ submit_button.click(process_text, inputs=[input_text], outputs=enhanced_text)
205
+
206
+ return interface
207
 
208
 
209
  if __name__ == "__main__":
210
+ interface = create_interface()
211
+ interface.launch(share=True)