Spaces:
Runtime error
Runtime error
Create app_Jim20240322.py
Browse files- app_Jim20240322.py +78 -0
app_Jim20240322.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
#from diffusers import DiffusionPipeline
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
import io
|
7 |
+
from io import BytesIO
|
8 |
+
|
9 |
+
# Load the image-to-text pipeline
|
10 |
+
image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
11 |
+
|
12 |
+
# Load the text mask pipeline
|
13 |
+
generate_mask = pipeline("fill-mask", model="google-bert/bert-base-uncased")
|
14 |
+
|
15 |
+
# Load the text generation pipeline
|
16 |
+
extend_text = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2")
|
17 |
+
|
18 |
+
# Load the text-to-image model
|
19 |
+
#text_to_image = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
20 |
+
|
21 |
+
def main():
|
22 |
+
st.title("SmartCart (Product Recommender)")
|
23 |
+
|
24 |
+
# User input for text or URL
|
25 |
+
input_option = st.radio("Select input option:", ("Text", "URL"))
|
26 |
+
|
27 |
+
# Input text
|
28 |
+
if input_option == "Text":
|
29 |
+
text_input = st.text_input("Enter the text:")
|
30 |
+
if st.button("Generate Story and Image") and text_input:
|
31 |
+
#generate_image(text_input)
|
32 |
+
generated_text = generate_mask_from_result(text_input)
|
33 |
+
st.success(f'Generated Caption: {text_input}')
|
34 |
+
st.success(f'Generated Text: {generated_text}')
|
35 |
+
|
36 |
+
|
37 |
+
# Input URL
|
38 |
+
elif input_option == "URL":
|
39 |
+
image_url = st.text_input("Enter the image URL:")
|
40 |
+
if st.button("Generate Story and Image") and image_url:
|
41 |
+
image_text = image_to_text_from_url(image_url)
|
42 |
+
#generate_image(image_text)
|
43 |
+
generated_text = generate_mask_from_result(image_text)
|
44 |
+
st.success(f'Generated Caption: {image_text}')
|
45 |
+
st.success(f'Generated Text: {generated_text}')
|
46 |
+
|
47 |
+
|
48 |
+
def image_to_text_from_file(uploaded_file):
|
49 |
+
image_bytes = io.BytesIO(uploaded_file.read())
|
50 |
+
return image_to_text(image_bytes)[0]['generated_text']
|
51 |
+
|
52 |
+
def image_to_text_from_url(image_url):
|
53 |
+
response = requests.get(image_url)
|
54 |
+
image_bytes = Image.open(BytesIO(response.content))
|
55 |
+
return image_to_text(image_bytes)[0]['generated_text']
|
56 |
+
|
57 |
+
def generate_image(text):
|
58 |
+
rephrased_text = "I want to buy " + text + " and [MASK] for my children"
|
59 |
+
generated_image = text_to_image(rephrased_text)
|
60 |
+
st.image(generated_image, caption="Generated Image", use_column_width=True)
|
61 |
+
|
62 |
+
def generate_mask_from_result(text):
|
63 |
+
output = generate_mask(f"I want to buy 2 toys for my children. I will buy {text} and [MASK].")
|
64 |
+
|
65 |
+
if output and output[0]['token_str'] == text:
|
66 |
+
# If the first result matches the input, get the second output instead
|
67 |
+
second_output = output[1] if len(output) > 1 else None
|
68 |
+
result = second_output['token_str'] if second_output else None
|
69 |
+
else:
|
70 |
+
result = output[0]['token_str'] if output else None
|
71 |
+
|
72 |
+
extended_text = extend_text(f"A child with {text} and {result} ")
|
73 |
+
return extended_text[0]['generated_text']
|
74 |
+
|
75 |
+
|
76 |
+
if __name__ == "__main__":
|
77 |
+
main()
|
78 |
+
|