AidenYan commited on
Commit
4a34bbc
·
verified ·
1 Parent(s): 4b8759c

Create app_Aiden20240322.py

Browse files
Files changed (1) hide show
  1. app_Aiden20240322.py +90 -0
app_Aiden20240322.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModel, pipeline as transformers_pipeline, AutoModelForCausalLM
3
+ from diffusers import DiffusionPipeline
4
+ import requests
5
+ from PIL import Image
6
+ import io
7
+ import torch
8
+ import torch.nn.functional as F
9
+ import pandas as pd
10
+
11
+ # Function for mean pooling of embeddings
12
+ def mean_pooling(model_output, attention_mask):
13
+ token_embeddings = model_output[0] # First element of model_output contains all token embeddings
14
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
15
+ sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
16
+ sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
17
+ return sum_embeddings / sum_mask
18
+
19
+ # Load model and tokenizer from HuggingFace Hub for sentence embeddings
20
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
21
+ model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
22
+
23
+ def load_image(input_type, uploaded_file=None, image_url=""):
24
+ """
25
+ Loads an image from an uploaded file or URL.
26
+ """
27
+ if input_type == "Upload Image" and uploaded_file is not None:
28
+ return Image.open(io.BytesIO(uploaded_file.getvalue()))
29
+ elif input_type == "Image URL" and image_url:
30
+ try:
31
+ response = requests.get(image_url)
32
+ return Image.open(io.BytesIO(response.content))
33
+ except Exception as e:
34
+ st.error(f"Error loading image from URL: {e}")
35
+ return None
36
+
37
+ def image_to_caption(image, input_type, uploaded_file, image_url):
38
+ """
39
+ Generates a caption for the given image.
40
+ """
41
+ image_to_text_pipeline = transformers_pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
42
+ if input_type == "Upload Image" and uploaded_file:
43
+ return image_to_text_pipeline(uploaded_file.getvalue())[0]['generated_text']
44
+ elif input_type == "Image URL" and image_url:
45
+ return image_to_text_pipeline(image_url)[0]['generated_text']
46
+ return ""
47
+
48
+ def select_closest_sentence(generated_text):
49
+ """
50
+ Selects the sentence closest in meaning to the generated_text.
51
+ """
52
+ # Load CSV data
53
+ df = pd.read_csv('toys_and_games_reviews.csv', encoding='ISO-8859-1')
54
+ sentences = df.iloc[:, -1].tolist() # Assuming the last column contains sentences
55
+
56
+ # Tokenize and compute embeddings for sentences from CSV
57
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
58
+ with torch.no_grad():
59
+ model_output = model(**encoded_input)
60
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
61
+ sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
62
+
63
+ # Tokenize and compute embedding for the generated_text
64
+ encoded_new_sentence = tokenizer([generated_text], padding=True, truncation=True, return_tensors='pt')
65
+ with torch.no_grad():
66
+ model_output_new_sentence = model(**encoded_new_sentence)
67
+ new_sentence_embedding = mean_pooling(model_output_new_sentence, encoded_new_sentence['attention_mask'])
68
+ new_sentence_embedding = F.normalize(new_sentence_embedding, p=2, dim=1)
69
+
70
+ # Find the most similar sentence in your corpus
71
+ most_similar_idx = F.cosine_similarity(new_sentence_embedding, sentence_embeddings).topk(1).indices.item()
72
+ most_similar_sentence = sentences[most_similar_idx]
73
+
74
+ return most_similar_sentence
75
+
76
+ def generate_text_from_caption(caption):
77
+ """
78
+ Generates text based on the provided caption.
79
+ """
80
+ text_generator = transformers_pipeline('text-generation', model='pranavpsv/genre-story-generator-v2')
81
+ generated = text_generator(caption, max_length=100, num_return_sequences=1)
82
+ return generated[0]['generated_text']
83
+
84
+ def main():
85
+ st.title('Image to Story to Image Converter')
86
+
87
+ # User interface for input selection
88
+ input_type = st.radio("Select input type:", ("Upload Image", "Image URL"))
89
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if input_type == "Upload Image" else None
90
+ image_url = st.text_input("Enter the image URL