Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,24 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline as transformers_pipeline,
|
3 |
from diffusers import DiffusionPipeline
|
4 |
import requests
|
5 |
from PIL import Image
|
6 |
import io
|
|
|
|
|
|
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def load_image(input_type, uploaded_file=None, image_url=""):
|
13 |
"""
|
@@ -38,22 +49,37 @@ def select_closest_sentence(generated_text):
|
|
38 |
"""
|
39 |
Selects the sentence closest in meaning to the generated_text.
|
40 |
"""
|
41 |
-
#
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
#
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
def generate_text_from_caption(caption):
|
49 |
"""
|
50 |
Generates text based on the provided caption.
|
51 |
"""
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
generated_outputs = model.generate(input_ids, max_length=100, num_return_sequences=1)
|
56 |
-
return tokenizer.decode(generated_outputs[0], skip_special_tokens=True)
|
57 |
|
58 |
def main():
|
59 |
st.title('Image to Story to Image Converter')
|
@@ -61,36 +87,4 @@ def main():
|
|
61 |
# User interface for input selection
|
62 |
input_type = st.radio("Select input type:", ("Upload Image", "Image URL"))
|
63 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if input_type == "Upload Image" else None
|
64 |
-
image_url = st.text_input("Enter the image URL
|
65 |
-
|
66 |
-
# Load image based on input selection
|
67 |
-
image = load_image(input_type, uploaded_file, image_url)
|
68 |
-
if image:
|
69 |
-
st.image(image, caption='Selected Image', use_column_width=True)
|
70 |
-
|
71 |
-
# Process image and generate text
|
72 |
-
if st.button('Generate Caption and Continue'):
|
73 |
-
if image:
|
74 |
-
with st.spinner("Processing..."):
|
75 |
-
# Convert image to text
|
76 |
-
caption = image_to_caption(image, input_type, uploaded_file, image_url)
|
77 |
-
st.success(f'Caption: {caption}')
|
78 |
-
|
79 |
-
# Select the closest sentence using the similarity model
|
80 |
-
closest_sentence = select_closest_sentence(caption)
|
81 |
-
st.write(f"Selected Sentence: {closest_sentence}")
|
82 |
-
|
83 |
-
# Generate additional text based on the selected sentence
|
84 |
-
generated_text = generate_text_from_caption(closest_sentence)
|
85 |
-
st.text_area("Generated Story:", generated_text, height=200)
|
86 |
-
|
87 |
-
# Generate an image from the story
|
88 |
-
diffusion_pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
89 |
-
generated_images = diffusion_pipeline(generated_text, num_inference_steps=50)
|
90 |
-
st.image(generated_images.images[0], caption='Generated Image from Story')
|
91 |
-
|
92 |
-
else:
|
93 |
-
st.error("Please upload an image or enter an image URL first.")
|
94 |
-
|
95 |
-
if __name__ == "__main__":
|
96 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModel, pipeline as transformers_pipeline, AutoModelForCausalLM
|
3 |
from diffusers import DiffusionPipeline
|
4 |
import requests
|
5 |
from PIL import Image
|
6 |
import io
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import pandas as pd
|
10 |
|
11 |
+
# Function for mean pooling of embeddings
|
12 |
+
def mean_pooling(model_output, attention_mask):
|
13 |
+
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
14 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
15 |
+
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
|
16 |
+
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
17 |
+
return sum_embeddings / sum_mask
|
18 |
+
|
19 |
+
# Load model and tokenizer from HuggingFace Hub for sentence embeddings
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained('AidenYan/MiniLM_L6_v2_finetuned_ISOM5240_Group27')
|
21 |
+
model = AutoModel.from_pretrained('AidenYan/MiniLM_L6_v2_finetuned_ISOM5240_Group27')
|
22 |
|
23 |
def load_image(input_type, uploaded_file=None, image_url=""):
|
24 |
"""
|
|
|
49 |
"""
|
50 |
Selects the sentence closest in meaning to the generated_text.
|
51 |
"""
|
52 |
+
# Load CSV data
|
53 |
+
df = pd.read_csv('toys_and_games_reviews.csv', encoding='ISO-8859-1')
|
54 |
+
sentences = df.iloc[:, -1].tolist() # Assuming the last column contains sentences
|
55 |
+
|
56 |
+
# Tokenize and compute embeddings for sentences from CSV
|
57 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
58 |
+
with torch.no_grad():
|
59 |
+
model_output = model(**encoded_input)
|
60 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
61 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
62 |
|
63 |
+
# Tokenize and compute embedding for the generated_text
|
64 |
+
encoded_new_sentence = tokenizer([generated_text], padding=True, truncation=True, return_tensors='pt')
|
65 |
+
with torch.no_grad():
|
66 |
+
model_output_new_sentence = model(**encoded_new_sentence)
|
67 |
+
new_sentence_embedding = mean_pooling(model_output_new_sentence, encoded_new_sentence['attention_mask'])
|
68 |
+
new_sentence_embedding = F.normalize(new_sentence_embedding, p=2, dim=1)
|
69 |
+
|
70 |
+
# Find the most similar sentence in your corpus
|
71 |
+
most_similar_idx = F.cosine_similarity(new_sentence_embedding, sentence_embeddings).topk(1).indices.item()
|
72 |
+
most_similar_sentence = sentences[most_similar_idx]
|
73 |
+
|
74 |
+
return most_similar_sentence
|
75 |
|
76 |
def generate_text_from_caption(caption):
|
77 |
"""
|
78 |
Generates text based on the provided caption.
|
79 |
"""
|
80 |
+
text_generator = transformers_pipeline('text-generation', model='pranavpsv/genre-story-generator-v2')
|
81 |
+
generated = text_generator(caption, max_length=100, num_return_sequences=1)
|
82 |
+
return generated[0]['generated_text']
|
|
|
|
|
83 |
|
84 |
def main():
|
85 |
st.title('Image to Story to Image Converter')
|
|
|
87 |
# User interface for input selection
|
88 |
input_type = st.radio("Select input type:", ("Upload Image", "Image URL"))
|
89 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if input_type == "Upload Image" else None
|
90 |
+
image_url = st.text_input("Enter the image URL
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|