|
import time |
|
import os |
|
import random |
|
import numpy as np |
|
import torch |
|
import torch.utils.data |
|
import torchaudio |
|
import commons |
|
from mel_processing import spectrogram_torch, mel_spectrogram_torch, spec_to_mel_torch |
|
from utils import load_wav_to_torch, load_filepaths_and_text |
|
from text import cleaned_text_to_sequence, get_bert |
|
|
|
"""Multi speaker version""" |
|
|
|
|
|
class TextAudioSpeakerLoader(torch.utils.data.Dataset): |
|
""" |
|
1) loads audio, speaker_id, text pairs |
|
2) normalizes text and converts them to sequences of integers |
|
3) computes spectrograms from audio files. |
|
""" |
|
|
|
def __init__(self, audiopaths_sid_text, hparams): |
|
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text) |
|
self.max_wav_value = hparams.max_wav_value |
|
self.sampling_rate = hparams.sampling_rate |
|
self.filter_length = hparams.filter_length |
|
self.hop_length = hparams.hop_length |
|
self.win_length = hparams.win_length |
|
self.sampling_rate = hparams.sampling_rate |
|
self.spk_map = hparams.spk2id |
|
self.hparams = hparams |
|
|
|
self.use_mel_spec_posterior = getattr(hparams, "use_mel_posterior_encoder", False) |
|
if self.use_mel_spec_posterior: |
|
self.n_mel_channels = getattr(hparams, "n_mel_channels", 80) |
|
|
|
self.cleaned_text = getattr(hparams, "cleaned_text", False) |
|
|
|
self.add_blank = hparams.add_blank |
|
self.min_text_len = getattr(hparams, "min_text_len", 1) |
|
self.max_text_len = getattr(hparams, "max_text_len", 300) |
|
|
|
random.seed(1234) |
|
random.shuffle(self.audiopaths_sid_text) |
|
self._filter() |
|
|
|
def _filter(self): |
|
""" |
|
Filter text & store spec lengths |
|
""" |
|
|
|
|
|
|
|
|
|
audiopaths_sid_text_new = [] |
|
lengths = [] |
|
skipped = 0 |
|
for _id, spk, language, text, phones, tone, word2ph in self.audiopaths_sid_text: |
|
audiopath = f'{_id}' |
|
if self.min_text_len <= len(phones) and len(phones) <= self.max_text_len: |
|
phones = phones.split(" ") |
|
tone = [int(i) for i in tone.split(" ")] |
|
word2ph = [int(i) for i in word2ph.split(" ")] |
|
audiopaths_sid_text_new.append([audiopath, spk, language, text, phones, tone, word2ph]) |
|
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length)) |
|
else: |
|
skipped += 1 |
|
print("skipped: ", skipped, ", total: ", len(self.audiopaths_sid_text)) |
|
self.audiopaths_sid_text = audiopaths_sid_text_new |
|
self.lengths = lengths |
|
|
|
def get_audio_text_speaker_pair(self, audiopath_sid_text): |
|
|
|
audiopath, sid, language, text, phones, tone, word2ph = audiopath_sid_text |
|
|
|
bert, phones, tone, language = self.get_text(text, word2ph, phones, tone, language, audiopath) |
|
|
|
spec, wav = self.get_audio(audiopath) |
|
sid = torch.LongTensor([int(self.spk_map[sid])]) |
|
return (phones, spec, wav, sid, tone, language, bert) |
|
|
|
def get_audio(self, filename): |
|
audio_norm, sampling_rate = torchaudio.load(filename, frame_offset=0, num_frames=-1, normalize=True, channels_first=True) |
|
''' |
|
audio, sampling_rate = load_wav_to_torch(filename) |
|
if sampling_rate != self.sampling_rate: |
|
raise ValueError("{} {} SR doesn't match target {} SR".format( |
|
sampling_rate, self.sampling_rate)) |
|
audio_norm = audio / self.max_wav_value |
|
audio_norm = audio_norm.unsqueeze(0) |
|
''' |
|
spec_filename = filename.replace(".wav", ".spec.pt") |
|
if self.use_mel_spec_posterior: |
|
spec_filename = spec_filename.replace(".spec.pt", ".mel.pt") |
|
if os.path.exists(spec_filename): |
|
spec = torch.load(spec_filename) |
|
else: |
|
if self.use_mel_spec_posterior: |
|
|
|
|
|
|
|
|
|
|
|
|
|
spec = mel_spectrogram_torch(audio_norm, self.filter_length, |
|
self.n_mel_channels, self.sampling_rate, self.hop_length, |
|
self.win_length, self.hparams.mel_fmin, self.hparams.mel_fmax, center=False) |
|
else: |
|
spec = spectrogram_torch(audio_norm, self.filter_length, |
|
self.sampling_rate, self.hop_length, self.win_length, |
|
center=False) |
|
spec = torch.squeeze(spec, 0) |
|
torch.save(spec, spec_filename) |
|
return spec, audio_norm |
|
|
|
def get_text(self, text, word2ph, phone, tone, language_str, wav_path): |
|
|
|
pold = phone |
|
w2pho = [i for i in word2ph] |
|
word2ph = [i for i in word2ph] |
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) |
|
pold2 = phone |
|
|
|
if self.add_blank: |
|
p1 = len(phone) |
|
phone = commons.intersperse(phone, 0) |
|
p2 = len(phone) |
|
t1 = len(tone) |
|
tone = commons.intersperse(tone, 0) |
|
t2 = len(tone) |
|
language = commons.intersperse(language, 0) |
|
for i in range(len(word2ph)): |
|
word2ph[i] = word2ph[i] * 2 |
|
word2ph[0] += 1 |
|
bert_path = wav_path.replace(".wav", ".bert.pt") |
|
try: |
|
bert = torch.load(bert_path) |
|
assert bert.shape[-1] == len(phone) |
|
except: |
|
bert = get_bert(text, word2ph, language_str) |
|
torch.save(bert, bert_path) |
|
|
|
assert bert.shape[-1] == len(phone) |
|
|
|
assert bert.shape[-1] == len(phone), ( |
|
bert.shape, len(phone), sum(word2ph), p1, p2, t1, t2, pold, pold2, word2ph, text, w2pho) |
|
phone = torch.LongTensor(phone) |
|
tone = torch.LongTensor(tone) |
|
language = torch.LongTensor(language) |
|
return bert, phone, tone, language |
|
|
|
def get_sid(self, sid): |
|
sid = torch.LongTensor([int(sid)]) |
|
return sid |
|
|
|
def __getitem__(self, index): |
|
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index]) |
|
|
|
def __len__(self): |
|
return len(self.audiopaths_sid_text) |
|
|
|
|
|
class TextAudioSpeakerCollate(): |
|
""" Zero-pads model inputs and targets |
|
""" |
|
|
|
def __init__(self, return_ids=False): |
|
self.return_ids = return_ids |
|
|
|
def __call__(self, batch): |
|
"""Collate's training batch from normalized text, audio and speaker identities |
|
PARAMS |
|
------ |
|
batch: [text_normalized, spec_normalized, wav_normalized, sid] |
|
""" |
|
|
|
_, ids_sorted_decreasing = torch.sort( |
|
torch.LongTensor([x[1].size(1) for x in batch]), |
|
dim=0, descending=True) |
|
|
|
max_text_len = max([len(x[0]) for x in batch]) |
|
max_spec_len = max([x[1].size(1) for x in batch]) |
|
max_wav_len = max([x[2].size(1) for x in batch]) |
|
|
|
text_lengths = torch.LongTensor(len(batch)) |
|
spec_lengths = torch.LongTensor(len(batch)) |
|
wav_lengths = torch.LongTensor(len(batch)) |
|
sid = torch.LongTensor(len(batch)) |
|
|
|
text_padded = torch.LongTensor(len(batch), max_text_len) |
|
tone_padded = torch.LongTensor(len(batch), max_text_len) |
|
language_padded = torch.LongTensor(len(batch), max_text_len) |
|
bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len) |
|
|
|
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len) |
|
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) |
|
text_padded.zero_() |
|
tone_padded.zero_() |
|
language_padded.zero_() |
|
spec_padded.zero_() |
|
wav_padded.zero_() |
|
bert_padded.zero_() |
|
for i in range(len(ids_sorted_decreasing)): |
|
row = batch[ids_sorted_decreasing[i]] |
|
|
|
text = row[0] |
|
text_padded[i, :text.size(0)] = text |
|
text_lengths[i] = text.size(0) |
|
|
|
spec = row[1] |
|
spec_padded[i, :, :spec.size(1)] = spec |
|
spec_lengths[i] = spec.size(1) |
|
|
|
wav = row[2] |
|
wav_padded[i, :, :wav.size(1)] = wav |
|
wav_lengths[i] = wav.size(1) |
|
|
|
sid[i] = row[3] |
|
|
|
tone = row[4] |
|
tone_padded[i, :tone.size(0)] = tone |
|
|
|
language = row[5] |
|
language_padded[i, :language.size(0)] = language |
|
|
|
bert = row[6] |
|
bert_padded[i, :, :bert.size(1)] = bert |
|
|
|
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, tone_padded, language_padded, bert_padded |
|
|
|
|
|
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler): |
|
""" |
|
Maintain similar input lengths in a batch. |
|
Length groups are specified by boundaries. |
|
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}. |
|
|
|
It removes samples which are not included in the boundaries. |
|
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded. |
|
""" |
|
|
|
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True): |
|
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) |
|
self.lengths = dataset.lengths |
|
self.batch_size = batch_size |
|
self.boundaries = boundaries |
|
|
|
self.buckets, self.num_samples_per_bucket = self._create_buckets() |
|
self.total_size = sum(self.num_samples_per_bucket) |
|
self.num_samples = self.total_size // self.num_replicas |
|
|
|
def _create_buckets(self): |
|
buckets = [[] for _ in range(len(self.boundaries) - 1)] |
|
for i in range(len(self.lengths)): |
|
length = self.lengths[i] |
|
idx_bucket = self._bisect(length) |
|
if idx_bucket != -1: |
|
buckets[idx_bucket].append(i) |
|
|
|
for i in range(len(buckets) - 1, 0, -1): |
|
if len(buckets[i]) == 0: |
|
buckets.pop(i) |
|
self.boundaries.pop(i + 1) |
|
|
|
num_samples_per_bucket = [] |
|
for i in range(len(buckets)): |
|
len_bucket = len(buckets[i]) |
|
total_batch_size = self.num_replicas * self.batch_size |
|
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size |
|
num_samples_per_bucket.append(len_bucket + rem) |
|
return buckets, num_samples_per_bucket |
|
|
|
def __iter__(self): |
|
|
|
g = torch.Generator() |
|
g.manual_seed(self.epoch) |
|
|
|
indices = [] |
|
if self.shuffle: |
|
for bucket in self.buckets: |
|
indices.append(torch.randperm(len(bucket), generator=g).tolist()) |
|
else: |
|
for bucket in self.buckets: |
|
indices.append(list(range(len(bucket)))) |
|
|
|
batches = [] |
|
for i in range(len(self.buckets)): |
|
bucket = self.buckets[i] |
|
len_bucket = len(bucket) |
|
if (len_bucket == 0): |
|
continue |
|
ids_bucket = indices[i] |
|
num_samples_bucket = self.num_samples_per_bucket[i] |
|
|
|
|
|
rem = num_samples_bucket - len_bucket |
|
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)] |
|
|
|
|
|
ids_bucket = ids_bucket[self.rank::self.num_replicas] |
|
|
|
|
|
for j in range(len(ids_bucket) // self.batch_size): |
|
batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]] |
|
batches.append(batch) |
|
|
|
if self.shuffle: |
|
batch_ids = torch.randperm(len(batches), generator=g).tolist() |
|
batches = [batches[i] for i in batch_ids] |
|
self.batches = batches |
|
|
|
assert len(self.batches) * self.batch_size == self.num_samples |
|
return iter(self.batches) |
|
|
|
def _bisect(self, x, lo=0, hi=None): |
|
if hi is None: |
|
hi = len(self.boundaries) - 1 |
|
|
|
if hi > lo: |
|
mid = (hi + lo) // 2 |
|
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: |
|
return mid |
|
elif x <= self.boundaries[mid]: |
|
return self._bisect(x, lo, mid) |
|
else: |
|
return self._bisect(x, mid + 1, hi) |
|
else: |
|
return -1 |
|
|
|
def __len__(self): |
|
return self.num_samples // self.batch_size |
|
|