zhacritic / app.py
Ailyth's picture
Update app.py
9b6cf76 verified
import PIL.Image
import numpy as np
import os,re,pytz,time
import streamlit as st
from datetime import datetime
import google.generativeai as genai
import streamlit.components.v1 as components
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
UTC_8 = pytz.timezone('Asia/Shanghai')
#cache func
@st.cache_resource
def load_my_model():
model = load_model("model/zha2024_6.h5")
return model
my_model = load_my_model()
target_size = (300, 300)
class_labels = {0: '炭黑组', 1: '正常发挥', 2: '炫彩组', 3: '糊糊组', 4: '炸组日常', 5: '凡尔赛',6: '非食物'}
predicted_class=''
#Set up the Gemini model and API key
#https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/gemini?hl=zh-cn
MY_KEY= os.environ.get("GOOGLE_API_KEY")
genai.configure(api_key=MY_KEY)
gemini_model = genai.GenerativeModel('gemini-pro-vision')
neutral=os.environ.get("sys_info_0")
toxic=os.environ.get("sys_info_1")
heartfelt=os.environ.get("sys_info_2")
chilly_list=os.environ.get("X").split(",")
default_prompt=''
generation_config = {
"temperature": 0.99,
"top_p": 1,
"top_k": 40,
"max_output_tokens": 2048,
"candidate_count":1
}
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE"
}
]
#functions
@st.cache_data
def preprocess_image_cached(img_path, target_size):
img = image.load_img(img_path, target_size=target_size)
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
return img_array
def chilly_words_killer(text,words_list):
for word in words_list:
pattern = re.compile(re.escape(word), re.IGNORECASE)
text = pattern.sub("**😮", text)
return text
def get_critic_info(review_style):
if review_style == '默认':
default_prompt = neutral
critic_name = 'SavorBalancer'
avatar = '👩‍🍳'
elif review_style == '毒舌👾':
default_prompt = toxic
critic_name = 'SpicyCritique'
avatar = '😈'
elif review_style == '暖心🍀':
default_prompt = heartfelt
critic_name = 'GentleGourmet'
avatar = '🤗'
else:
raise ValueError(f'Invalid review style: {review_style}')
return default_prompt, critic_name, avatar
def img_score(img_raw_path):
global predicted_class
img_array = preprocess_image_cached(img_raw_path, target_size)
predictions = my_model.predict(img_array)
predicted_class_index = np.argmax(predictions, axis=-1)
predicted_class = class_labels[predicted_class_index[0]]
class_probabilities = {label: prob for label, prob in zip(class_labels.values(), predictions[0])}
score={k: round(v * 100, 2) for k, v in class_probabilities.items()}
high_score_float=predictions[0,(predicted_class_index[0])]
high_score=round(high_score_float*100,2)
return score,high_score
def score_desc(score):
if score > 90:
return "这妥妥的属于"
elif score >= 70 and score <= 90:
return "这大概率属于"
elif score >= 40 and score <= 70:
return "这可能属于"
else:
return "我猜这属于"
def review_waiting(_class, critic_name):
if _class == '非食物':
return '图里面好像没有食物吧❓点评可能会说些无关的'
elif critic_name == 'SavorBalancer':
return '🍴品尝中,正在构思点评'
elif critic_name == 'SpicyCritique':
return '不要催啦,我这不正在吃吗💢'
elif critic_name == 'GentleGourmet':
return '正在为你种彩虹🌈'
def gemini_bot(default_prompt,img_raw_path,_class):
img = PIL.Image.open(img_raw_path)
model = gemini_model
klass="当前食物类型是:"+_class
prompt=klass+default_prompt
response = model.generate_content([prompt, img],
stream=False,
safety_settings=safety_settings,
generation_config=generation_config)
response.resolve()
response_text=f'''{response.text}'''
final_response=chilly_words_killer(response_text,chilly_list)
return final_response
def review():
if predicted_class is not None:
with st.spinner(review_waiting(predicted_class, critic_name)):
print(f"{datetime.now(UTC_8).strftime('%m-%d %H:%M:%S')}--Start Reviewing")
final_response = gemini_bot(default_prompt, img_raw_path, predicted_class)
with st.chat_message(critic_name, avatar=avatar):
st.write(final_response)
st.button("再次点评", key="1")
print(f"{datetime.now(UTC_8).strftime('%m-%d %H:%M:%S')}--Complete\n💣💣💣")
info('#edfde2','#78817a','🆗点评完毕,内容由AI生成,仅供娱乐',55)
def info(bg_color,font_color,text,height):
html=f'''<html><style>
body {{
margin: 0;
padding: 0;
color: #3b4740;
background-color: transparent;
}}
.container {{
max-width: 100%;
margin: 0 auto;
padding: 20px;
font-size: 15px;
color:{font_color}
display: flex;
justify-content: space-between;
align-items: center;
background-color: #f8e9a000;
padding: 15px;
border-radius: 10px;
line-height: 1.6;
border: #fde2e4 0px solid;
background-color:{bg_color} ;
}}
</style><body><div class="container">
{text}
</body></html>'''
components.html(html,height=height)
#Streamlit UI
#Guide: https://docs.streamlit.io/library/api-reference
#st.header("🧨ZhazuEvaluator")
#st.subheader('', divider='rainbow')
st.image('https://cdnjson.com/images/2024/01/30/banner7f1835c564c9b79c.png')
# Upload an image
bg_color='#e1f1fa'
border_font_color='#78817a'
css=f'''<style>
[data-testid="stFileUploadDropzone"]{{background-color:{bg_color};color:{border_font_color}}}
[data-testid="baseButton-secondary"]{{background-color:{bg_color};border:1px {border_font_color} solid;color:{border_font_color}}}
[data-testid="baseButton-secondary"]>div[data-testid="stMarkdownContainer"] {{border: none;}}
div[data-testid="stFileDropzoneInstructions"]>div>span::after {{
content:"✨来上传一张你的得意之作,PC可直接拖放上传";
visibility:visible;
display:block;
}}
</style>'''
st.markdown(css,unsafe_allow_html=True)
img_raw_path = st.file_uploader("上传图片", type=['png', 'jpg', 'jpeg', 'webp'], label_visibility="collapsed")
col1, col2 = st.columns(2)
my_image = ""
if not img_raw_path is None:
my_image = img_raw_path.read()
my_image = PIL.Image.open(img_raw_path)
print(f"{datetime.now(UTC_8).strftime('%m-%d %H:%M:%S')}--IMG uploaded")
with col1:
st.image(my_image, caption='✅图片已上传', width=350)
# Predict the class of the image
if my_image:
with st.spinner('💥正在打分中...'):
print(f"{datetime.now(UTC_8).strftime('%m-%d %H:%M:%S')}--Start Classification")
score,high_score=img_score(img_raw_path)
with col2:
st.bar_chart(score, color='#fdd3de',width=412)
score_noti=f"📝{score_desc(high_score)}{predicted_class}➡️得分:{high_score}"
info('#edfde2','#78817a',score_noti,55)
review_style= st.radio(
"请选择点评文字风格",
["默认", "毒舌👾", "暖心🍀"],
index=0, horizontal=True
)
default_prompt, critic_name, avatar=get_critic_info(review_style)
#review
if my_image:
review()
announcements='''注意事项\n
1.上传的图片有一定概率不会被识别,可能出现点评完全和图片无关的情况,特别是非食物图片\n
2.如果AI开始说车轱辘话,不断重复某个句式,内容也相关性不大,请重新点评。\n
3.毒舌点评可能会出现轻微冒犯用语,请不要放在心上。
'''
st.warning(announcements)
left_blank, centre,last_blank = st.columns([3.4,2,3])
with centre:
st.image("https://visitor-badge.laobi.icu/badge?page_id=Ailyth/z2024&left_text=MyDearVisitors&left_color=pink&right_color=Paleturquoise")