Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,777 Bytes
dd0f333 1736ed6 9890667 1736ed6 9890667 1736ed6 9890667 1736ed6 9890667 fcada9f 9890667 fcada9f 9890667 fcada9f 9890667 fcada9f 9890667 fcada9f 9890667 3b8a4de 04b31b7 1736ed6 9890667 1736ed6 9890667 fcada9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
title: Artistic Portrait Generation
emoji: 🎨
colorFrom: yellow
colorTo: gray
sdk: gradio
sdk_version: 5.22.0
app_file: app.py
pinned: true
license: apache-2.0
models:
- AisingioroHao0/IP-Adapter-Art
- guozinan/PuLID
- stabilityai/stable-diffusion-xl-refiner-1.0
- xinsir/controlnet-openpose-sdxl-1.0
---
# IP Adapter Art:
<a href='https://huggingface.co/AisingioroHao0/IP-Adapter-Art'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a><a href=''><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Dataset-blue'></a> [](https://colab.research.google.com/drive/1kV7q3Gzr8GPG9cChdDQ5ncCx84TYjuu3?usp=sharing)

------
## Introduction
IP Adapter Art is a specialized version that uses a professional style encoder. Its goal is to achieve style control through reference images in the text-to-image diffusion model and solve the problems of instability and incomplete stylization of existing methods. This is a preprint version, and more models and training data coming soon.
## How to use
[](https://colab.research.google.com/drive/1kV7q3Gzr8GPG9cChdDQ5ncCx84TYjuu3?usp=sharing) can be used to conduct experiments directly.
For local experiments, please refer to a [demo](https://github.com/aihao2000/IP-Adapter-Art/blob/main/artistic_portrait_gen.ipynb).
Local experiments require a basic torch environment and dependencies:
```
conda create -n artadapter python=3.10
conda activate artadapter
pip install -r requirements.txt
pip install git+https://github.com/openai/CLIP.git
pip install -e .
```
## Comparison with Existing Style Control Methods in Diffusion Models
Evaluation using [StyleBench](https://github.com/open-mmlab/StyleShot) style images. Image quality is evaluated using [improved aesthetic predictor](https://github.com/christophschuhmann/improved-aesthetic-predictor)
| | CLIP Style Similarity | CSD Style Similarity | CLIP Text Alignment | Image Quality | Average |
| --------------------- | --------------------- | -------------------- | ------------------- | ------------- | --------- |
| DEADiff | 61.99 | 43.54 | 20.82 | 60.76 | 46.78 |
| StyleShot | 63.01 | 52.40 | 18.93 | 55.54 | 47.47 |
| Instant Style | 65.39 | 58.39 | 21.09 | 60.62 | 51.37 |
| **Art-Adapter(ours)** | **67.03** | **65.02** | 20.25 | **62.23** | **53.63** |

## Examples of Text-guided Stylized Generation

## Artistic Portrait Generation
### Pipeline
We built an artistic portrait generation pipeline using Art-Adapter, PuLID, and ControlNet. The structure is shown in the figure below.

### Examples

## Stylize ControlNet Parameter Visualization

## Citation
```
@misc{ipadapterart,
author = {Hao Ai, Xiaosai Zhang},
title = {IP Adapter Art},
year = {2024},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/aihao2000/IP-Adapter-Art}}
}
```
## Acknowledgements
|