Ajay12345678980 commited on
Commit
aac9d83
1 Parent(s): 49e5314

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -59
app.py CHANGED
@@ -1,63 +1,53 @@
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("Ajay12345678980/QA_GPT_J")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
- demo.launch()
 
 
1
+
2
+ import re
3
+ import torch
4
  import gradio as gr
5
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
6
+
7
+ # Load the model and tokenizer from Hugging Face repository
8
+ model_repo_id = "Ajay12345678980/QA_GPT_J" # Replace with your model repository ID
9
+
10
+ # Initialize the model and tokenizer
11
+ device = "cuda" if torch.cuda.is_available() else "cpu"
12
+ model = GPT2LMHeadModel.from_pretrained(model_repo_id).to(device)
13
+ tokenizer = GPT2Tokenizer.from_pretrained(model_repo_id)
14
+
15
+ # Define the prediction function
16
+ def generate_answer(question):
17
+ input_ids = tokenizer.encode(question, return_tensors="pt").to(device)
18
+ attention_mask = torch.ones_like(input_ids).to(device)
19
+ pad_token_id = tokenizer.eos_token_id
20
+
21
+ output = model.generate(
22
+ input_ids,
23
+ max_new_tokens=100,
24
+ num_return_sequences=1,
25
+ attention_mask=attention_mask,
26
+ pad_token_id=pad_token_id
27
+ )
28
+ decoded_output = tokenizer.decode(output[0], skip_special_tokens=True)
29
+ start_index = decoded_output.find("Answer")
30
+ end_index = decoded_output.find("<ANSWER_ENDED>")
31
+
32
+ if start_index != -1:
33
+ if end_index != -1:
34
+ answer_text = decoded_output[start_index + len("Answer"):end_index].strip()
35
+ else:
36
+ answer_text = decoded_output[start_index + len("Answer"):].strip()
37
+ return answer_text
38
+ else:
39
+ return "Sorry, I couldn't generate an answer."
40
+
41
+ # Gradio interface setup
42
+ interface = gr.Interface(
43
+ fn=generate_answer,
44
+ inputs="text",
45
+ outputs="text",
46
+ title="GPT-2 Text Generation",
47
+ description="Enter a question and see what the model generates!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  )
49
 
50
+ # Launch the Gradio app
51
  if __name__ == "__main__":
52
+ interface.launch()
53
+