Spaces:
Sleeping
Sleeping
Ajay12345678980
commited on
Commit
•
aac9d83
1
Parent(s):
49e5314
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,53 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
""
|
43 |
-
|
44 |
-
""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
)
|
60 |
|
61 |
-
|
62 |
if __name__ == "__main__":
|
63 |
-
|
|
|
|
1 |
+
|
2 |
+
import re
|
3 |
+
import torch
|
4 |
import gradio as gr
|
5 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
6 |
+
|
7 |
+
# Load the model and tokenizer from Hugging Face repository
|
8 |
+
model_repo_id = "Ajay12345678980/QA_GPT_J" # Replace with your model repository ID
|
9 |
+
|
10 |
+
# Initialize the model and tokenizer
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
model = GPT2LMHeadModel.from_pretrained(model_repo_id).to(device)
|
13 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_repo_id)
|
14 |
+
|
15 |
+
# Define the prediction function
|
16 |
+
def generate_answer(question):
|
17 |
+
input_ids = tokenizer.encode(question, return_tensors="pt").to(device)
|
18 |
+
attention_mask = torch.ones_like(input_ids).to(device)
|
19 |
+
pad_token_id = tokenizer.eos_token_id
|
20 |
+
|
21 |
+
output = model.generate(
|
22 |
+
input_ids,
|
23 |
+
max_new_tokens=100,
|
24 |
+
num_return_sequences=1,
|
25 |
+
attention_mask=attention_mask,
|
26 |
+
pad_token_id=pad_token_id
|
27 |
+
)
|
28 |
+
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True)
|
29 |
+
start_index = decoded_output.find("Answer")
|
30 |
+
end_index = decoded_output.find("<ANSWER_ENDED>")
|
31 |
+
|
32 |
+
if start_index != -1:
|
33 |
+
if end_index != -1:
|
34 |
+
answer_text = decoded_output[start_index + len("Answer"):end_index].strip()
|
35 |
+
else:
|
36 |
+
answer_text = decoded_output[start_index + len("Answer"):].strip()
|
37 |
+
return answer_text
|
38 |
+
else:
|
39 |
+
return "Sorry, I couldn't generate an answer."
|
40 |
+
|
41 |
+
# Gradio interface setup
|
42 |
+
interface = gr.Interface(
|
43 |
+
fn=generate_answer,
|
44 |
+
inputs="text",
|
45 |
+
outputs="text",
|
46 |
+
title="GPT-2 Text Generation",
|
47 |
+
description="Enter a question and see what the model generates!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
)
|
49 |
|
50 |
+
# Launch the Gradio app
|
51 |
if __name__ == "__main__":
|
52 |
+
interface.launch()
|
53 |
+
|