Spaces:
Sleeping
Sleeping
import streamlit as st | |
from streamlit_chat import message | |
from langchain import OpenAI | |
from langchain.chains import ConversationChain | |
from langchain.chains.conversation.memory import (ConversationBufferMemory, | |
ConversationSummaryMemory, | |
ConversationBufferWindowMemory | |
) | |
if 'conversation' not in st.session_state: | |
st.session_state['conversation'] =None | |
if 'messages' not in st.session_state: | |
st.session_state['messages'] =[] | |
if 'API_Key' not in st.session_state: | |
st.session_state['API_Key'] ='' | |
# Setting page title and header | |
st.set_page_config(page_title="Chat GPT Clone", page_icon=":robot_face:") | |
st.markdown("<h1 style='text-align: center;'>How can I assist you? </h1>", unsafe_allow_html=True) | |
st.sidebar.title("😎") | |
st.session_state['API_Key']= st.sidebar.text_input("What's your API key?",type="password") | |
summarise_button = st.sidebar.button("Summarise the conversation", key="summarise") | |
if summarise_button: | |
summarise_placeholder = st.sidebar.write("Nice chatting with you my friend ❤️:\n\n"+st.session_state['conversation'].memory.buffer) | |
#summarise_placeholder.write("Nice chatting with you my friend ❤️:\n\n"+st.session_state['conversation'].memory.buffer) | |
#import os | |
#os.environ["OPENAI_API_KEY"] = "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" | |
def getresponse(userInput, api_key): | |
if st.session_state['conversation'] is None: | |
llm = OpenAI( | |
temperature=0, | |
openai_api_key=api_key, | |
model_name='text-davinci-003' #we can also use 'gpt-3.5-turbo' | |
) | |
st.session_state['conversation'] = ConversationChain( | |
llm=llm, | |
verbose=True, | |
memory=ConversationSummaryMemory(llm=llm) | |
) | |
response=st.session_state['conversation'].predict(input=userInput) | |
print(st.session_state['conversation'].memory.buffer) | |
return response | |
response_container = st.container() | |
# Here we will have a container for user input text box | |
container = st.container() | |
with container: | |
with st.form(key='my_form', clear_on_submit=True): | |
user_input = st.text_area("Your question goes here:", key='input', height=100) | |
submit_button = st.form_submit_button(label='Send') | |
if submit_button: | |
st.session_state['messages'].append(user_input) | |
model_response=getresponse(user_input,st.session_state['API_Key']) | |
st.session_state['messages'].append(model_response) | |
with response_container: | |
for i in range(len(st.session_state['messages'])): | |
if (i % 2) == 0: | |
message(st.session_state['messages'][i], is_user=True, key=str(i) + '_user') | |
else: | |
message(st.session_state['messages'][i], key=str(i) + '_AI') | |