Spaces:
Runtime error
Runtime error
AkashKhatri
commited on
Commit
·
6e5598c
1
Parent(s):
981cb8d
Upload file
Browse files- sign_asl_cnn_30_epochs.h5 +3 -0
- streamlit_app.py +152 -0
sign_asl_cnn_30_epochs.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4cc2a954c171da481bcc1010c9ae2b2ea1737899cc5b316094833dfde223fa7
|
3 |
+
size 137
|
streamlit_app.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from keras.models import load_model
|
4 |
+
import cv2
|
5 |
+
from io import BytesIO
|
6 |
+
import mediapipe as mp
|
7 |
+
|
8 |
+
# Load the model
|
9 |
+
model = load_model('sign_asl_cnn_30_epochs.h5')
|
10 |
+
class_labels = {i: str(i) if i < 10 else chr(65 + i - 10) for i in range(36)}
|
11 |
+
|
12 |
+
# Function to preprocess the image
|
13 |
+
def preprocess_image(image):
|
14 |
+
image = cv2.resize(image, (200, 200))
|
15 |
+
image = image / 255.0
|
16 |
+
image = image.reshape(1, 200, 200, 3)
|
17 |
+
return image
|
18 |
+
|
19 |
+
# Function to predict the sign language letter
|
20 |
+
def predict_letter(image):
|
21 |
+
processed_image = preprocess_image(image)
|
22 |
+
predictions = model.predict(processed_image)
|
23 |
+
predicted_class = np.argmax(predictions, axis=1)[0]
|
24 |
+
sign_letter = class_labels[predicted_class]
|
25 |
+
return sign_letter
|
26 |
+
|
27 |
+
# Function to detect hands in the image
|
28 |
+
def detect_hands(image):
|
29 |
+
mp_hands = mp.solutions.hands
|
30 |
+
hands = mp_hands.Hands()
|
31 |
+
margin = 15
|
32 |
+
|
33 |
+
# Convert the image to RGB
|
34 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
35 |
+
|
36 |
+
# Process the image and get the hand landmarks
|
37 |
+
results = hands.process(image_rgb)
|
38 |
+
|
39 |
+
if results.multi_hand_landmarks:
|
40 |
+
for landmarks in results.multi_hand_landmarks:
|
41 |
+
# Get bounding box coordinates of the hand
|
42 |
+
landmarks_xy = [(int(landmark.x * image.shape[1]), int(landmark.y * image.shape[0]))
|
43 |
+
for landmark in landmarks.landmark]
|
44 |
+
|
45 |
+
# Define the bounding box for the hand
|
46 |
+
x_min = max(0, min(landmarks_xy, key=lambda x: x[0])[0] - margin)
|
47 |
+
y_min = max(0, min(landmarks_xy, key=lambda x: x[1])[1] - margin)
|
48 |
+
x_max = min(image.shape[1], max(landmarks_xy, key=lambda x: x[0])[0] + margin)
|
49 |
+
y_max = min(image.shape[0], max(landmarks_xy, key=lambda x: x[1])[1] + margin)
|
50 |
+
|
51 |
+
# Extract the hand region
|
52 |
+
roi = image[y_min:y_max, x_min:x_max]
|
53 |
+
|
54 |
+
# Check if the ROI is empty
|
55 |
+
if roi.size == 0:
|
56 |
+
continue
|
57 |
+
|
58 |
+
# Resize the ROI to match your model's input shape
|
59 |
+
roi = cv2.resize(roi, (200, 200), interpolation=cv2.INTER_AREA)
|
60 |
+
hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)
|
61 |
+
|
62 |
+
lower_yellow = np.array([93, 72, 51])
|
63 |
+
upper_yellow = np.array([224, 194, 183])
|
64 |
+
mask = cv2.inRange(hsv, lower_yellow, upper_yellow)
|
65 |
+
roi = cv2.bitwise_and(roi, roi, mask=mask)
|
66 |
+
roi = roi.reshape(1, 200, 200, 3) # Ensure it matches your model's input shape
|
67 |
+
|
68 |
+
# Make predictions using your classifier
|
69 |
+
predictions = model.predict(roi)
|
70 |
+
predicted_class = int(np.argmax(predictions, axis=1)[0])
|
71 |
+
result = class_labels[predicted_class]
|
72 |
+
|
73 |
+
# Draw result on the image
|
74 |
+
cv2.putText(image, str(result), (x_min, y_min - 10),
|
75 |
+
cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2)
|
76 |
+
|
77 |
+
# Draw bounding box on the image
|
78 |
+
cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (255, 0, 0), 2)
|
79 |
+
|
80 |
+
return image
|
81 |
+
|
82 |
+
# Streamlit app
|
83 |
+
st.title('Sign Language Recognition')
|
84 |
+
|
85 |
+
# Sidebar with radio button for Upload/Webcam
|
86 |
+
selected_option = st.sidebar.radio("Select Option", ["Upload", "Webcam"], index=0)
|
87 |
+
|
88 |
+
if selected_option == "Upload":
|
89 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png"])
|
90 |
+
|
91 |
+
if uploaded_file is not None:
|
92 |
+
if st.button('Predict'):
|
93 |
+
contents = uploaded_file.read()
|
94 |
+
nparr = np.frombuffer(contents, np.uint8)
|
95 |
+
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
96 |
+
|
97 |
+
# Make the prediction
|
98 |
+
predicted_letter = predict_letter(image)
|
99 |
+
|
100 |
+
# Display the predicted letter
|
101 |
+
st.write('Predicted Letter:', predicted_letter)
|
102 |
+
|
103 |
+
elif selected_option == "Webcam":
|
104 |
+
# Placeholder for webcam frame
|
105 |
+
webcam_frame = st.empty()
|
106 |
+
|
107 |
+
# Placeholder for predicted letter in webcam mode
|
108 |
+
predicted_letter_webcam = st.empty()
|
109 |
+
|
110 |
+
# Placeholder for webcam capture status
|
111 |
+
webcam_capture_status = st.empty()
|
112 |
+
|
113 |
+
# Placeholder for webcam stop button
|
114 |
+
webcam_stop_button = st.empty()
|
115 |
+
|
116 |
+
# Placeholder for webcam status
|
117 |
+
webcam_status = st.empty()
|
118 |
+
|
119 |
+
# Placeholder for webcam button
|
120 |
+
webcam_button = st.button("Start Webcam")
|
121 |
+
|
122 |
+
if webcam_button:
|
123 |
+
webcam_status.text("Webcam is on.")
|
124 |
+
webcam_stop_button = st.button("Stop Webcam")
|
125 |
+
|
126 |
+
# OpenCV video capture
|
127 |
+
cap = cv2.VideoCapture(0)
|
128 |
+
|
129 |
+
while True:
|
130 |
+
# Read the frame from the webcam
|
131 |
+
ret, frame = cap.read()
|
132 |
+
|
133 |
+
# Display the frame in Streamlit
|
134 |
+
webcam_frame.image(frame, channels="BGR")
|
135 |
+
|
136 |
+
# Detect hands in the current frame
|
137 |
+
frame = detect_hands(frame)
|
138 |
+
|
139 |
+
# Convert the frame to JPEG format
|
140 |
+
_, jpeg = cv2.imencode(".jpg", frame)
|
141 |
+
|
142 |
+
# Display the predicted letter
|
143 |
+
predicted_letter = predict_letter(frame)
|
144 |
+
predicted_letter_webcam.text(f"Predicted Letter: {predicted_letter}")
|
145 |
+
|
146 |
+
# Check if the "Stop Webcam" button is clicked
|
147 |
+
if webcam_stop_button:
|
148 |
+
webcam_status.text("Webcam is off.")
|
149 |
+
break
|
150 |
+
|
151 |
+
# Release the webcam when done
|
152 |
+
cap.release()
|