Spaces:
Runtime error
Runtime error
AkashKhatri
commited on
Commit
·
bcbc229
1
Parent(s):
2087b2f
Update app.py
Browse files
app.py
CHANGED
@@ -1,169 +1,14 @@
|
|
1 |
-
|
2 |
-
import numpy as np
|
3 |
-
from keras.models import load_model
|
4 |
-
import cv2
|
5 |
-
from io import BytesIO
|
6 |
-
import mediapipe as mp
|
7 |
-
import tensorflow as tf
|
8 |
-
|
9 |
-
# Load the model
|
10 |
-
import os
|
11 |
-
|
12 |
-
# Set environment variables
|
13 |
-
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Suppress TensorFlow warnings
|
14 |
-
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # Specify GPU device index
|
15 |
-
|
16 |
-
# Specify GPU configuration
|
17 |
-
config = tf.compat.v1.ConfigProto()
|
18 |
-
config.gpu_options.allow_growth = True
|
19 |
-
session = tf.compat.v1.Session(config=config)
|
20 |
-
|
21 |
-
model_path = os.path.abspath('sign_asl_cnn_30_epochs.h5')
|
22 |
-
if os.path.exists(model_path):
|
23 |
-
# Load the model
|
24 |
-
model = load_model(model_path)
|
25 |
-
else:
|
26 |
-
print(f"File not found: {model_path}")
|
27 |
-
class_labels = {i: str(i) if i < 10 else chr(65 + i - 10) for i in range(36)}
|
28 |
-
|
29 |
-
# Function to preprocess the image
|
30 |
-
def preprocess_image(image):
|
31 |
-
image = cv2.resize(image, (200, 200))
|
32 |
-
image = image / 255.0
|
33 |
-
image = image.reshape(1, 200, 200, 3)
|
34 |
-
return image
|
35 |
-
|
36 |
-
# Function to predict the sign language letter
|
37 |
-
def predict_letter(image):
|
38 |
-
processed_image = preprocess_image(image)
|
39 |
-
predictions = model.predict(processed_image)
|
40 |
-
predicted_class = np.argmax(predictions, axis=1)[0]
|
41 |
-
sign_letter = class_labels[predicted_class]
|
42 |
-
return sign_letter
|
43 |
-
|
44 |
-
# Function to detect hands in the image
|
45 |
-
def detect_hands(image):
|
46 |
-
mp_hands = mp.solutions.hands
|
47 |
-
hands = mp_hands.Hands()
|
48 |
-
margin = 15
|
49 |
-
|
50 |
-
# Convert the image to RGB
|
51 |
-
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
52 |
-
|
53 |
-
# Process the image and get the hand landmarks
|
54 |
-
results = hands.process(image_rgb)
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
# Get bounding box coordinates of the hand
|
59 |
-
landmarks_xy = [(int(landmark.x * image.shape[1]), int(landmark.y * image.shape[0]))
|
60 |
-
for landmark in landmarks.landmark]
|
61 |
-
|
62 |
-
# Define the bounding box for the hand
|
63 |
-
x_min = max(0, min(landmarks_xy, key=lambda x: x[0])[0] - margin)
|
64 |
-
y_min = max(0, min(landmarks_xy, key=lambda x: x[1])[1] - margin)
|
65 |
-
x_max = min(image.shape[1], max(landmarks_xy, key=lambda x: x[0])[0] + margin)
|
66 |
-
y_max = min(image.shape[0], max(landmarks_xy, key=lambda x: x[1])[1] + margin)
|
67 |
-
|
68 |
-
# Extract the hand region
|
69 |
-
roi = image[y_min:y_max, x_min:x_max]
|
70 |
-
|
71 |
-
# Check if the ROI is empty
|
72 |
-
if roi.size == 0:
|
73 |
-
continue
|
74 |
-
|
75 |
-
# Resize the ROI to match your model's input shape
|
76 |
-
roi = cv2.resize(roi, (200, 200), interpolation=cv2.INTER_AREA)
|
77 |
-
hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)
|
78 |
-
|
79 |
-
lower_yellow = np.array([93, 72, 51])
|
80 |
-
upper_yellow = np.array([224, 194, 183])
|
81 |
-
mask = cv2.inRange(hsv, lower_yellow, upper_yellow)
|
82 |
-
roi = cv2.bitwise_and(roi, roi, mask=mask)
|
83 |
-
roi = roi.reshape(1, 200, 200, 3) # Ensure it matches your model's input shape
|
84 |
-
|
85 |
-
# Make predictions using your classifier
|
86 |
-
predictions = model.predict(roi)
|
87 |
-
predicted_class = int(np.argmax(predictions, axis=1)[0])
|
88 |
-
result = class_labels[predicted_class]
|
89 |
-
|
90 |
-
# Draw result on the image
|
91 |
-
cv2.putText(image, str(result), (x_min, y_min - 10),
|
92 |
-
cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2)
|
93 |
-
|
94 |
-
# Draw bounding box on the image
|
95 |
-
cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (255, 0, 0), 2)
|
96 |
-
|
97 |
-
return image
|
98 |
|
99 |
-
# Streamlit app
|
100 |
st.title('Sign Language Recognition')
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
if st.button('Predict'):
|
110 |
-
contents = uploaded_file.read()
|
111 |
-
nparr = np.frombuffer(contents, np.uint8)
|
112 |
-
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
113 |
-
|
114 |
-
# Make the prediction
|
115 |
-
predicted_letter = predict_letter(image)
|
116 |
-
|
117 |
-
# Display the predicted letter
|
118 |
-
st.write('Predicted Letter:', predicted_letter)
|
119 |
-
|
120 |
-
elif selected_option == "Webcam":
|
121 |
-
# Placeholder for webcam frame
|
122 |
-
webcam_frame = st.empty()
|
123 |
-
|
124 |
-
# Placeholder for predicted letter in webcam mode
|
125 |
-
predicted_letter_webcam = st.empty()
|
126 |
-
|
127 |
-
# Placeholder for webcam capture status
|
128 |
-
webcam_capture_status = st.empty()
|
129 |
-
|
130 |
-
# Placeholder for webcam stop button
|
131 |
-
webcam_stop_button = st.empty()
|
132 |
-
|
133 |
-
# Placeholder for webcam status
|
134 |
-
webcam_status = st.empty()
|
135 |
-
|
136 |
-
# Placeholder for webcam button
|
137 |
-
webcam_button = st.button("Start Webcam")
|
138 |
-
|
139 |
-
if webcam_button:
|
140 |
-
webcam_status.text("Webcam is on.")
|
141 |
-
webcam_stop_button = st.button("Stop Webcam")
|
142 |
-
|
143 |
-
# OpenCV video capture
|
144 |
-
cap = cv2.VideoCapture(0)
|
145 |
-
|
146 |
-
while True:
|
147 |
-
# Read the frame from the webcam
|
148 |
-
ret, frame = cap.read()
|
149 |
-
|
150 |
-
# Display the frame in Streamlit
|
151 |
-
webcam_frame.image(frame, channels="BGR")
|
152 |
-
|
153 |
-
# Detect hands in the current frame
|
154 |
-
frame = detect_hands(frame)
|
155 |
-
|
156 |
-
# Convert the frame to JPEG format
|
157 |
-
_, jpeg = cv2.imencode(".jpg", frame)
|
158 |
-
|
159 |
-
# Display the predicted letter
|
160 |
-
predicted_letter = predict_letter(frame)
|
161 |
-
predicted_letter_webcam.text(f"Predicted Letter: {predicted_letter}")
|
162 |
-
|
163 |
-
# Check if the "Stop Webcam" button is clicked
|
164 |
-
if webcam_stop_button:
|
165 |
-
webcam_status.text("Webcam is off.")
|
166 |
-
break
|
167 |
-
|
168 |
-
# Release the webcam when done
|
169 |
-
cap.release()
|
|
|
1 |
+
# app.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
import streamlit as st
|
4 |
+
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
6 |
st.title('Sign Language Recognition')
|
7 |
|
8 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png"])
|
9 |
+
if uploaded_file is not None:
|
10 |
+
if st.button('Predict'):
|
11 |
+
files = {'file': uploaded_file.getvalue()}
|
12 |
+
response = requests.post('http://74.12.105.219:8090/predict', files=files)
|
13 |
+
result = response.json()
|
14 |
+
st.write('Predicted Letter: ', result['predicted_letter'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|