Akbartus commited on
Commit
beffd29
1 Parent(s): e94918d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +91 -0
app.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import numpy as np
4
+ import random
5
+ from huggingface_hub import AsyncInferenceClient
6
+ from translatepy import Translator
7
+ import requests
8
+ import re
9
+ import asyncio
10
+ from PIL import Image
11
+ from gradio_client import Client, handle_file
12
+ from huggingface_hub import login
13
+ from gradio_imageslider import ImageSlider
14
+
15
+ MAX_SEED = np.iinfo(np.int32).max
16
+ HF_TOKEN = os.environ.get("HF_TOKEN")
17
+ HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
18
+
19
+ def enable_lora(lora_add, basemodel):
20
+ return basemodel if not lora_add else lora_add
21
+
22
+ async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
23
+ try:
24
+ if seed == -1:
25
+ seed = random.randint(0, MAX_SEED)
26
+ seed = int(seed)
27
+ text = str(Translator().translate(prompt, 'English')) + "," + lora_word
28
+ client = AsyncInferenceClient()
29
+ image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
30
+ return image, seed
31
+ except Exception as e:
32
+ print(f"Error generando imagen: {e}")
33
+ return None, None
34
+
35
+ def get_upscale_finegrain(prompt, img_path, upscale_factor):
36
+ try:
37
+ client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
38
+ result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
39
+ return result[1]
40
+ except Exception as e:
41
+ print(f"Error escalando imagen: {e}")
42
+ return None
43
+
44
+ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
45
+ model = enable_lora(lora_model, basemodel) if process_lora else basemodel
46
+ image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
47
+ if image is None:
48
+ return [None, None]
49
+
50
+ image_path = "temp_image.jpg"
51
+ image.save(image_path, format="JPEG")
52
+
53
+ if process_upscale:
54
+ upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
55
+ if upscale_image_path is not None:
56
+ upscale_image = Image.open(upscale_image_path)
57
+ upscale_image.save("upscale_image.jpg", format="JPEG")
58
+ return [image_path, "upscale_image.jpg"]
59
+ else:
60
+ print("Error: The scaled image path is None")
61
+ return [image_path, image_path]
62
+ else:
63
+ return [image_path, image_path]
64
+
65
+ css = """
66
+ #col-container{ margin: 0 auto; max-width: 1024px;}
67
+ """
68
+
69
+ with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
70
+ with gr.Column(elem_id="col-container"):
71
+ with gr.Row():
72
+ with gr.Column(scale=3):
73
+ output_res = ImageSlider(label="Flux / Upscaled")
74
+ with gr.Column(scale=2):
75
+ prompt = gr.Textbox(label="Image Description")
76
+ basemodel_choice = gr.Dropdown(label="Model", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV", "enhanceaiteam/Flux-uncensored", "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", "Shakker-Labs/FLUX.1-dev-LoRA-add-details", "city96/FLUX.1-dev-gguf"], value="black-forest-labs/FLUX.1-schnell")
77
+ lora_model_choice = gr.Dropdown(label="LoRA", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora", "enhanceaiteam/Flux-uncensored"], value="XLabs-AI/flux-RealismLora")
78
+ process_lora = gr.Checkbox(label="LoRA Process")
79
+ process_upscale = gr.Checkbox(label="Scale Process")
80
+ upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)
81
+
82
+ with gr.Accordion(label="Advanced Options", open=False):
83
+ width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
84
+ height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768)
85
+ scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8)
86
+ steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8)
87
+ seed = gr.Number(label="Seed", value=-1)
88
+
89
+ btn = gr.Button("Generate")
90
+ btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res,)
91
+ demo.launch()