Akbartus commited on
Commit
caa3a8e
1 Parent(s): 5f90122

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -17
app.py CHANGED
@@ -44,7 +44,7 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
44
  model = enable_lora(lora_model, basemodel) if process_lora else basemodel
45
  image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
46
  if image is None:
47
- return [None, None, None]
48
 
49
  image_path = "temp_image.jpg"
50
  image.save(image_path, format="JPEG")
@@ -54,17 +54,17 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
54
  if upscale_image_path is not None:
55
  upscale_image = Image.open(upscale_image_path)
56
  upscale_image.save("upscale_image.jpg", format="JPEG")
57
- return [image_path, "upscale_image.jpg", seed]
58
  else:
59
  print("Error: The scaled image path is None")
60
- return [image_path, image_path, seed]
61
  else:
62
- return [image_path, image_path, seed]
63
 
64
  css = """
65
  #col-container{ margin: 0 auto; max-width: 1024px;}
66
  """
67
- # Update the interface
68
  with gr.Blocks(css=css) as demo:
69
  with gr.Column(elem_id="col-container"):
70
  with gr.Row():
@@ -72,24 +72,20 @@ with gr.Blocks(css=css) as demo:
72
  output_res = ImageSlider(label="Flux / Upscaled")
73
  with gr.Column(scale=2):
74
  prompt = gr.Textbox(label="Image Description")
75
- basemodel_choice = gr.Dropdown(label="Model", choices=["black-forest-labs/FLUX.1-schnell", "Shakker-Labs/FLUX.1-dev-LoRA-add-details"], value="black-forest-labs/FLUX.1-schnell")
76
- lora_model_choice = gr.Dropdown(label="LoRA", choices=["XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
77
  process_lora = gr.Checkbox(label="LoRA Process")
78
  process_upscale = gr.Checkbox(label="Scale Process")
79
  upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)
80
 
81
  with gr.Accordion(label="Advanced Options", open=False):
82
  width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
83
- height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=1280)
84
- scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=4)
85
- steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=4)
86
  seed = gr.Number(label="Seed", value=-1)
 
87
 
88
  btn = gr.Button("Generate")
89
- seed_output = gr.Textbox(label="Seed Value") # Added Textbox for Seed Output
90
- btn.click(
91
- fn=gen,
92
- inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora],
93
- outputs=[output_res, seed_output], # Updated outputs to include seed
94
- )
95
- demo.launch()
 
44
  model = enable_lora(lora_model, basemodel) if process_lora else basemodel
45
  image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
46
  if image is None:
47
+ return [None, None]
48
 
49
  image_path = "temp_image.jpg"
50
  image.save(image_path, format="JPEG")
 
54
  if upscale_image_path is not None:
55
  upscale_image = Image.open(upscale_image_path)
56
  upscale_image.save("upscale_image.jpg", format="JPEG")
57
+ return [image_path, "upscale_image.jpg"]
58
  else:
59
  print("Error: The scaled image path is None")
60
+ return [image_path, image_path]
61
  else:
62
+ return [image_path, image_path]
63
 
64
  css = """
65
  #col-container{ margin: 0 auto; max-width: 1024px;}
66
  """
67
+
68
  with gr.Blocks(css=css) as demo:
69
  with gr.Column(elem_id="col-container"):
70
  with gr.Row():
 
72
  output_res = ImageSlider(label="Flux / Upscaled")
73
  with gr.Column(scale=2):
74
  prompt = gr.Textbox(label="Image Description")
75
+ basemodel_choice = gr.Dropdown(label="Model", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV", "enhanceaiteam/Flux-uncensored", "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", "Shakker-Labs/FLUX.1-dev-LoRA-add-details", "city96/FLUX.1-dev-gguf"], value="black-forest-labs/FLUX.1-schnell")
76
+ lora_model_choice = gr.Dropdown(label="LoRA", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora", "enhanceaiteam/Flux-uncensored"], value="XLabs-AI/flux-RealismLora")
77
  process_lora = gr.Checkbox(label="LoRA Process")
78
  process_upscale = gr.Checkbox(label="Scale Process")
79
  upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)
80
 
81
  with gr.Accordion(label="Advanced Options", open=False):
82
  width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
83
+ height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768)
84
+ scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8)
85
+ steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8)
86
  seed = gr.Number(label="Seed", value=-1)
87
+ print(seed)
88
 
89
  btn = gr.Button("Generate")
90
+ btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res,)
91
+ demo.launch()