import os import gradio as gr import numpy as np import random from huggingface_hub import InferenceClient # Replaced AsyncInferenceClient with InferenceClient from translatepy import Translator import requests import re from PIL import Image from gradio_client import Client, handle_file from huggingface_hub import login from gradio_imageslider import ImageSlider MAX_SEED = np.iinfo(np.int32).max def enable_lora(lora_add, basemodel): return basemodel if not lora_add else lora_add def generate_image(prompt, model, lora_word, width, height, scales, steps, seed): try: if seed == -1: seed = random.randint(0, MAX_SEED) print(seed) seed = int(seed) text = str(Translator().translate(prompt, 'English')) + "," + lora_word client = InferenceClient() # Using synchronous client instead of async image = client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model) return image, seed except Exception as e: print(f"Error generating image: {e}") return None, None def get_upscale_finegrain(prompt, img_path, upscale_factor): try: client = Client("finegrain/finegrain-image-enhancer") result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process") return result[1] except Exception as e: print(f"Error upscaling image: {e}") return None def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora): model = enable_lora(lora_model, basemodel) if process_lora else basemodel image, seed = generate_image(prompt, model, "", width, height, scales, steps, seed) if image is None: return [None, None] image_path = "temp_image.jpg" image.save(image_path, format="JPEG") if process_upscale: upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor) if upscale_image_path is not None: upscale_image = Image.open(upscale_image_path) upscale_image.save("upscale_image.jpg", format="JPEG") return [image_path, "upscale_image.jpg"] else: print("Error: The scaled image path is None") return [image_path, image_path] else: return [image_path, image_path] css = """ #col-container{ margin: 0 auto; max-width: 1024px;} """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): with gr.Row(): with gr.Column(scale=3): output_res = ImageSlider(label="Flux / Upscaled") with gr.Column(scale=2): prompt = gr.Textbox(label="Image Description") basemodel_choice = gr.Dropdown(label="Model", choices=["black-forest-labs/FLUX.1-schnell", "hakker-Labs/FLUX.1-dev-LoRA-add-details"], value="black-forest-labs/FLUX.1-schnell") lora_model_choice = gr.Dropdown(label="LoRA", choices=["XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora") process_lora = gr.Checkbox(label="LoRA Process") process_upscale = gr.Checkbox(label="Scale Process") upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2) with gr.Accordion(label="Advanced Options", open=False): width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280) height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=1280) scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=4) steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=4) seed = gr.Number(label="Seed", value=-1) btn = gr.Button("Generate") btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res,) demo.launch()