# import os # import gradio as gr # import numpy as np # import random # from huggingface_hub import AsyncInferenceClient # from translatepy import Translator # import requests # import re # import asyncio # from PIL import Image # from gradio_client import Client, handle_file # from huggingface_hub import login # from gradio_imageslider import ImageSlider # MAX_SEED = np.iinfo(np.int32).max # def enable_lora(lora_add, basemodel): # return basemodel if not lora_add else lora_add # async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed): # try: # if seed == -1: # seed = random.randint(0, MAX_SEED) # print(seed) # seed = int(seed) # text = str(Translator().translate(prompt, 'English')) + "," + lora_word # client = AsyncInferenceClient() # image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model) # return image, seed # except Exception as e: # print(f"Error generando imagen: {e}") # return None, None # def get_upscale_finegrain(prompt, img_path, upscale_factor): # try: # client = Client("finegrain/finegrain-image-enhancer") # result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process") # return result[1] # except Exception as e: # print(f"Error escalando imagen: {e}") # return None # async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora): # model = enable_lora(lora_model, basemodel) if process_lora else basemodel # image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed) # if image is None: # return [None, None] # image_path = "temp_image.jpg" # image.save(image_path, format="JPEG") # if process_upscale: # upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor) # if upscale_image_path is not None: # upscale_image = Image.open(upscale_image_path) # upscale_image.save("upscale_image.jpg", format="JPEG") # return [image_path, "upscale_image.jpg"] # else: # print("Error: The scaled image path is None") # return [image_path, image_path] # else: # return [image_path, image_path] # css = """ # #col-container{ margin: 0 auto; max-width: 1024px;} # """ # with gr.Blocks(css=css) as demo: # with gr.Column(elem_id="col-container"): # with gr.Row(): # with gr.Column(scale=3): # output_res = ImageSlider(label="Flux / Upscaled") # with gr.Column(scale=2): # prompt = gr.Textbox(label="Image Description") # basemodel_choice = gr.Dropdown(label="Model", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV", "enhanceaiteam/Flux-uncensored", "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", "Shakker-Labs/FLUX.1-dev-LoRA-add-details", "city96/FLUX.1-dev-gguf"], value="black-forest-labs/FLUX.1-schnell") # lora_model_choice = gr.Dropdown(label="LoRA", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora", "enhanceaiteam/Flux-uncensored"], value="XLabs-AI/flux-RealismLora") # process_lora = gr.Checkbox(label="LoRA Process") # process_upscale = gr.Checkbox(label="Scale Process") # upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2) # with gr.Accordion(label="Advanced Options", open=False): # width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280) # height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768) # scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8) # steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8) # seed = gr.Number(label="Seed", value=-1) # btn = gr.Button("Generate") # btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res,) # demo.launch()