Akbartus's picture
Update app.py
0170397
raw
history blame
5.01 kB
import datetime
import gradio as gr
from huggingface_hub import hf_hub_download
from langdetect import detect, DetectorFactory, detect_langs
import fasttext
from transformers import pipeline
models = {'en': 'Narsil/deberta-large-mnli-zero-cls', # English
'ru': 'DeepPavlov/xlm-roberta-large-en-ru-mnli', # Russian
#'uz': 'coppercitylabs/uzbek-news-category-classifier'
'uz': 'amberoad/bert-multilingual-passage-reranking-msmarco'
} #Uzbek
hypothesis_templates = {'en': 'This example is {}.', # English
'ru': 'Этот пример {}.', # Russian
'uz': 'Бу мисол {}.'} # Uzbek
classifiers = {'en': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['en'],
model=models['en']),
'ru': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['ru'],
model=models['ru']),
'uz': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['uz'],
model=models['uz'])
}
fasttext_model = fasttext.load_model(hf_hub_download("julien-c/fasttext-language-id", "lid.176.bin"))
def prep_examples():
example_text1 = "Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most \
people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. \
However, some will become seriously ill and require medical attention."
example_labels1 = "business,health related,politics,climate change"
example_text2 = "Том был невероятно рад встрече со своим другом, ученным из Китая, который занимается искусственным интелектом."
example_labels2 = "наука,политика"
example_text3 = "Алишер Навоий ўзбек классик шоири, буюк ижодкор ва ватанпарвар инсон бўлган."
example_labels3 = "шеърият,спорт, санъат"
examples = [
[example_text1, example_labels1],
[example_text2, example_labels2],
[example_text3, example_labels3]
]
return examples
def detect_lang(sequence, labels):
DetectorFactory.seed = 0
seq_lang = 'en'
try:
#seq_lang = detect(sequence)
#lbl_lang = detect(labels)
seq_lang = fasttext_model.predict(sequence, k=1)[0][0].split("__label__")[1]
lbl_lang = fasttext_model.predict(labels, k=1)[0][0].split("__label__")[1]
except:
print("Language detection failed!",
"Date:{}, Sequence:{}, Labels:{}".format(
str(datetime.datetime.now()),
labels))
if seq_lang != lbl_lang:
print("Different languages detected for sequence and labels!",
"Date:{}, Sequence:{}, Labels:{}, Sequence Language:{}, Label Language:{}".format(
str(datetime.datetime.now()),
sequence,
labels,
seq_lang,
lbl_lang))
if seq_lang in models:
print("Sequence Language detected.",
"Date:{}, Sequence:{}, Sequence Language:{}".format(
str(datetime.datetime.now()),
sequence,
seq_lang))
else:
print("Language not supported. Defaulting to English!",
"Date:{}, Sequence:{}, Sequence Language:{}".format(
str(datetime.datetime.now()),
sequence,
seq_lang))
seq_lang = 'en'
return seq_lang
def sequence_to_classify(sequence, labels):
classifier = classifiers[detect_lang(sequence, labels)]
label_clean = str(labels).split(",")
response = classifier(sequence, label_clean, multi_label=True)
predicted_labels = response['labels']
predicted_scores = response['scores']
clean_output = {idx: float(predicted_scores.pop(0)) for idx in predicted_labels}
print("Date:{}, Sequence:{}, Labels: {}".format(
str(datetime.datetime.now()),
sequence,
predicted_labels))
return clean_output
iface = gr.Interface(
title="En-Ru-Uz Multi-label Zero-shot Classification",
description="Supported languages are: English, Russian and Uzbek",
fn=sequence_to_classify,
inputs=[gr.inputs.Textbox(lines=10,
label="Please enter the text you would like to classify...",
placeholder="Text here..."),
gr.inputs.Textbox(lines=2,
label="Please enter the candidate labels (separated by comma)...",
placeholder="Labels here separated by comma...")],
outputs=gr.outputs.Label(num_top_classes=5),
#interpretation="default",
examples=prep_examples())
iface.launch()