Akbartus commited on
Commit
f1c4b50
·
1 Parent(s): 51a9fb7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -26
app.py CHANGED
@@ -5,25 +5,14 @@ from langdetect import detect, DetectorFactory, detect_langs
5
  import fasttext
6
  from transformers import pipeline
7
 
8
- models = {'en': 'Narsil/deberta-large-mnli-zero-cls', # English
9
- 'ru': 'DeepPavlov/xlm-roberta-large-en-ru-mnli', # Russian
10
- 'uz': 'coppercitylabs/uzbek-news-category-classifier'
11
- } #Uzbek
12
 
13
 
14
- hypothesis_templates = {'en': 'This example is {}.', # English
15
- 'ru': 'Этот пример {}.', # Russian
16
- 'uz': 'Бу мисол {}.'} # Uzbek
17
 
18
 
19
  classifiers = {'en': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['en'],
20
- model=models['en']),
21
-
22
- 'ru': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['ru'],
23
- model=models['ru']),
24
- 'uz': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['uz'],
25
- model=models['uz'])
26
- }
27
 
28
  fasttext_model = fasttext.load_model(hf_hub_download("julien-c/fasttext-language-id", "lid.176.bin"))
29
 
@@ -34,17 +23,8 @@ def prep_examples():
34
  example_labels1 = "business,health related,politics,climate change"
35
 
36
 
37
- example_text2 = "Том был невероятно рад встрече со своим другом, ученным из Китая, который занимается искусственным интелектом."
38
- example_labels2 = "наука,политика"
39
-
40
- example_text3 = "Алишер Навоий ўзбек классик шоири, буюк ижодкор ва ватанпарвар инсон бўлган."
41
- example_labels3 = "шеърият,спорт, санъат"
42
-
43
-
44
  examples = [
45
- [example_text1, example_labels1],
46
- [example_text2, example_labels2],
47
- [example_text3, example_labels3]
48
  ]
49
 
50
  return examples
@@ -106,8 +86,8 @@ def sequence_to_classify(sequence, labels):
106
  return clean_output
107
 
108
  iface = gr.Interface(
109
- title="En-Ru-Uz Multi-label Zero-shot Classification",
110
- description="Supported languages are: English, Russian and Uzbek",
111
  fn=sequence_to_classify,
112
  inputs=[gr.inputs.Textbox(lines=10,
113
  label="Please enter the text you would like to classify...",
 
5
  import fasttext
6
  from transformers import pipeline
7
 
8
+ models = {'en': 'Narsil/deberta-large-mnli-zero-cls'} #Uzbek
 
 
 
9
 
10
 
11
+ hypothesis_templates = {'en': 'This example is {}.'} # Uzbek
 
 
12
 
13
 
14
  classifiers = {'en': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['en'],
15
+ model=models['en'])}
 
 
 
 
 
 
16
 
17
  fasttext_model = fasttext.load_model(hf_hub_download("julien-c/fasttext-language-id", "lid.176.bin"))
18
 
 
23
  example_labels1 = "business,health related,politics,climate change"
24
 
25
 
 
 
 
 
 
 
 
26
  examples = [
27
+ [example_text1, example_labels1]
 
 
28
  ]
29
 
30
  return examples
 
86
  return clean_output
87
 
88
  iface = gr.Interface(
89
+ title="En Multi-label Zero-shot Classification",
90
+ description="Supported languages are: English",
91
  fn=sequence_to_classify,
92
  inputs=[gr.inputs.Textbox(lines=10,
93
  label="Please enter the text you would like to classify...",