import datetime import gradio as gr from huggingface_hub import hf_hub_download from langdetect import detect, DetectorFactory, detect_langs import fasttext from transformers import pipeline models = {'en': 'Narsil/deberta-large-mnli-zero-cls', # English 'ru': 'DeepPavlov/xlm-roberta-large-en-ru-mnli', # Russian #'uz': 'coppercitylabs/uzbek-news-category-classifier' 'uz': 'amberoad/bert-multilingual-passage-reranking-msmarco' } #Uzbek hypothesis_templates = {'en': 'This example is {}.', # English 'ru': 'Этот пример {}.', # Russian 'uz': 'Бу мисол {}.'} # Uzbek classifiers = {'en': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['en'], model=models['en']), 'ru': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['ru'], model=models['ru']), 'uz': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['uz'], model=models['uz']) } fasttext_model = fasttext.load_model(hf_hub_download("julien-c/fasttext-language-id", "lid.176.bin")) def prep_examples(): example_text1 = "Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most \ people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. \ However, some will become seriously ill and require medical attention." example_labels1 = "business,health related,politics,climate change" example_text2 = "Том был невероятно рад встрече со своим другом, ученным из Китая, который занимается искусственным интелектом." example_labels2 = "наука,политика" example_text3 = "Алишер Навоий ўзбек классик шоири, буюк ижодкор ва ватанпарвар инсон бўлган." example_labels3 = "шеърият,спорт, санъат" examples = [ [example_text1, example_labels1], [example_text2, example_labels2], [example_text3, example_labels3] ] return examples def detect_lang(sequence, labels): DetectorFactory.seed = 0 seq_lang = 'en' try: #seq_lang = detect(sequence) #lbl_lang = detect(labels) seq_lang = fasttext_model.predict(sequence, k=1)[0][0].split("__label__")[1] lbl_lang = fasttext_model.predict(labels, k=1)[0][0].split("__label__")[1] except: print("Language detection failed!", "Date:{}, Sequence:{}, Labels:{}".format( str(datetime.datetime.now()), labels)) if seq_lang != lbl_lang: print("Different languages detected for sequence and labels!", "Date:{}, Sequence:{}, Labels:{}, Sequence Language:{}, Label Language:{}".format( str(datetime.datetime.now()), sequence, labels, seq_lang, lbl_lang)) if seq_lang in models: print("Sequence Language detected.", "Date:{}, Sequence:{}, Sequence Language:{}".format( str(datetime.datetime.now()), sequence, seq_lang)) else: print("Language not supported. Defaulting to English!", "Date:{}, Sequence:{}, Sequence Language:{}".format( str(datetime.datetime.now()), sequence, seq_lang)) seq_lang = 'en' return seq_lang def sequence_to_classify(sequence, labels): classifier = classifiers[detect_lang(sequence, labels)] label_clean = str(labels).split(",") response = classifier(sequence, label_clean, multi_label=True) predicted_labels = response['labels'] predicted_scores = response['scores'] clean_output = {idx: float(predicted_scores.pop(0)) for idx in predicted_labels} print("Date:{}, Sequence:{}, Labels: {}".format( str(datetime.datetime.now()), sequence, predicted_labels)) return clean_output iface = gr.Interface( title="En-Ru-Uz Multi-label Zero-shot Classification", description="Supported languages are: English, Russian and Uzbek", fn=sequence_to_classify, inputs=[gr.inputs.Textbox(lines=10, label="Please enter the text you would like to classify...", placeholder="Text here..."), gr.inputs.Textbox(lines=2, label="Please enter the candidate labels (separated by comma)...", placeholder="Labels here separated by comma...")], outputs=gr.outputs.Label(num_top_classes=5), #interpretation="default", examples=prep_examples()) iface.launch()