vocals / app.py
AkhilTolani's picture
Update app.py
44ac812 verified
raw
history blame
5.37 kB
import spaces
import gradio as gr
import torch
from string import punctuation
import re
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
device = "cuda:0" if torch.cuda.is_available() else "cpu"
custom_repo_id = "AkhilTolani/parler-tts-music-200000"
model = ParlerTTSForConditionalGeneration.from_pretrained(custom_repo_id).to(device)
tokenizer = AutoTokenizer.from_pretrained("AkhilTolani/parler-tts-music-200000")
feature_extractor = AutoFeatureExtractor.from_pretrained("AkhilTolani/parler-tts-music-200000")
SAMPLE_RATE = feature_extractor.sampling_rate
SEED = 456
default_text = "i cant even find them getting your eyes with i can only think about checking your eyes your eyes your eyes"
default_description = "This hip hop track showcases a passionate male vocal with harmonizing background vocals, layered over shimmering cymbals, punchy kick and snare hits, synth pad, and wooden percussions. The song exudes a passionate, emotional, and groovy vibe that is sure to captivate listeners. This track would be perfect for setting the mood in a trendy urban nightclub or a stylish lounge setting."
examples = [
[
"i cant even find them getting your eyes with i can only think about checking your eyes your eyes your eyes",
"This hip hop track showcases a passionate male vocal with harmonizing background vocals, layered over shimmering cymbals, punchy kick and snare hits, synth pad, and wooden percussions. The song exudes a passionate, emotional, and groovy vibe that is sure to captivate listeners. This track would be perfect for setting the mood in a trendy urban nightclub or a stylish lounge setting."
]
]
@spaces.GPU
def gen_tts(text, description):
inputs = tokenizer(description, return_tensors="pt").to(device)
prompt = tokenizer(text, return_tensors="pt").to(device)
set_seed(SEED)
generation = model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids, min_length=20).to(torch.float32)
audio_arr = generation.cpu().numpy().squeeze()
return SAMPLE_RATE, audio_arr
css = """
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
width: 13rem;
margin-top: 10px;
margin-left: auto;
flex: unset !important;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor: pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.25rem !important;
padding-bottom: 0.25rem !important;
right:0;
}
#share-btn * {
all: unset !important;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
"""
with gr.Blocks(css=css) as block:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
Parler-TTS + Vocals 🥰
</h1>
</div>
</div>
"""
)
gr.HTML(
f"""
<p><a href="https://github.com/huggingface/parler-tts"> Parler-TTS + Vocals</a> is a finetuned model for generating high-quality vocals with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation).</p>
<p>Tips for ensuring good generation:
<ul>
<li>Include the term <b>"very clear audio"</b> to generate the highest quality audio, and "very noisy audio" for high levels of background noise</li>
<li>Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech</li>
<li>The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt</li>
</ul>
</p>
"""
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
description = gr.Textbox(label="Description", lines=2, value=default_description, elem_id="input_description")
run_button = gr.Button("Generate Audio", variant="primary")
with gr.Column():
audio_out = gr.Audio(label="Parler-TTS + Vocals", type="numpy", elem_id="audio_out")
inputs = [input_text, description]
outputs = [audio_out]
gr.Examples(examples=examples, fn=gen_tts, inputs=inputs, outputs=outputs, cache_examples=False)
run_button.click(fn=gen_tts, inputs=inputs, outputs=outputs, queue=True)
block.queue()
block.launch(share=True)