vocals / app.py
AkhilTolani's picture
Update app.py
eb76c8e verified
import gradio as gr
from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSConfig
from transformers import AutoTokenizer, set_seed
import soundfile as sf
import torch
import os
from accelerate import Accelerator
from accelerate.utils import set_seed
os.system("bash install.sh")
# Setup accelerator
accelerator = Accelerator()
device = accelerator.device
mixed_precision = "no" if device == "cpu" else "bf16"
torch_dtype = torch.float32 if device == "cpu" else torch.bfloat16
# Load model and tokenizer
model_path = "AkhilTolani/parler-tts-finetune-vocals-only-large-18720-steps"
config = ParlerTTSConfig.from_pretrained(model_path)
model = ParlerTTSForConditionalGeneration.from_pretrained(
model_path,
config=config,
torch_dtype=torch_dtype,
attn_implementation="sdpa"
)
model = accelerator.prepare(model)
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xxl")
def generate_audio(prompt, description, seed, temperature, max_length, do_sample):
seed = int(seed)
set_seed(seed)
input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
num_codebooks = model.decoder.config.num_codebooks
gen_kwargs = {
"do_sample": do_sample,
"temperature": temperature,
"max_length": max_length,
"min_new_tokens": num_codebooks + 1,
}
# Prepare batch
batch = {
"input_ids": input_ids,
"prompt_input_ids": prompt_input_ids,
}
def generate_step(batch, accelerator):
batch.pop("decoder_attention_mask", None)
eval_model = accelerator.unwrap_model(model, keep_fp32_wrapper=True)
# Handle torch.compile if it was used in training
if hasattr(eval_model, '_orig_mod'):
eval_model = eval_model._orig_mod
if mixed_precision != "no":
with accelerator.autocast():
output_audios = eval_model.generate(**batch, **gen_kwargs)
else:
output_audios = eval_model.generate(**batch, **gen_kwargs)
output_audios = accelerator.pad_across_processes(output_audios, dim=1, pad_index=0)
return output_audios
with torch.no_grad():
generated_audios = generate_step(batch, accelerator)
# Gather and pad predictions
generated_audios, input_ids, prompts = accelerator.pad_across_processes(
(generated_audios, batch["input_ids"], batch["prompt_input_ids"]), dim=1, pad_index=0
)
generated_audios, input_ids, prompts = accelerator.gather_for_metrics(
(generated_audios, input_ids, prompts)
)
# Convert to CPU and float32
generated_audios = generated_audios.cpu().float()
input_ids = input_ids.cpu()
prompts = prompts.cpu()
# Post-process the generated audio
audio_arr = generated_audios[0].numpy().squeeze() # Take the first sample if multiple were generated
sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate)
return "parler_tts_out.wav"
# Gradio interface setup (unchanged)
default_prompt = "thought no beef im hate to get murder right in these streets i told yall niggins is dead fucking green tbs and tsg my shit only you cant beat out if you aint going to aim and squeeze take your mvp out the game just like a referee im talking about my life you just rapping on beats i be clapping on streets theyre using technology to try to find where the bullets coming from they wont find those z nope because im a smooth criminal i got some screwed loose because im a sick of the"
default_description = "A male vocalist delivers an energetic and passionate freestyle in a medium-fast tempo, showcasing an enthusiastic and emotional performance with emphatic expression, conveying a youthful and groovy vibe throughout the track."
default_seed = "456"
interface = gr.Interface(
fn=generate_audio,
inputs=[
gr.Textbox(label="Prompt", value=default_prompt),
gr.Textbox(label="Description", value=default_description),
gr.Textbox(label="Seed", value=default_seed),
gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.75),
gr.Slider(label="Max Length", minimum=256, maximum=5120, step=256, value=2580),
gr.Dropdown(label="Do Sample", choices=[True, False], value=True)
],
outputs=gr.Audio(label="Generated Audio"),
title="Parler TTS Audio Generation",
description="Generate audio using the Parler TTS model. Provide a prompt, description, and seed to generate the corresponding audio."
)
if __name__ == "__main__":
interface.launch()