Spaces:
Runtime error
Runtime error
AkhilTolani
commited on
Commit
•
1f26343
1
Parent(s):
ebccdd9
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from queue import Queue
|
3 |
+
from threading import Thread
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import spaces
|
8 |
+
import gradio as gr
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from parler_tts import ParlerTTSForConditionalGeneration
|
12 |
+
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
|
13 |
+
from transformers.generation.streamers import BaseStreamer
|
14 |
+
|
15 |
+
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
16 |
+
torch_dtype = torch.float16 if device != "cpu" else torch.float32
|
17 |
+
|
18 |
+
repo_id = "parler-tts/parler_tts_mini_v0.1"
|
19 |
+
custom_repo_id = "AkhilTolani/vocals"
|
20 |
+
|
21 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained(
|
22 |
+
repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
|
23 |
+
).to(device)
|
24 |
+
custom_model = ParlerTTSForConditionalGeneration.from_pretrained(
|
25 |
+
custom_repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
|
26 |
+
).to(device)
|
27 |
+
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
29 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
|
30 |
+
|
31 |
+
SAMPLE_RATE = feature_extractor.sampling_rate
|
32 |
+
SEED = 777
|
33 |
+
|
34 |
+
default_text = "ooooh, please surprise me and sing whatever you would like to sing, ooh."
|
35 |
+
|
36 |
+
examples = [
|
37 |
+
[
|
38 |
+
"In the quiet of the night, Shadows dance beneath the moonlight, Whispers of a love that's gone, Echoes of a heart withdrawn.",
|
39 |
+
"A women speaks at an average pace with a slightly animated delivery in a very confined sounding environment with clear audio quality.",
|
40 |
+
15.0,
|
41 |
+
],
|
42 |
+
[
|
43 |
+
"'Lost in the memories, Of the days that used to be, A fragile heart in a storm, Yearning for a love reborn.",
|
44 |
+
"A man speaks in quite a monotone voice at a slightly faster-than-average pace in a confined space with very clear audio.",
|
45 |
+
15.0,
|
46 |
+
],
|
47 |
+
[
|
48 |
+
"Tears fall like autumn rain, Tracing lines of hidden pain, In the silence, I still hear, The ghost of you always near.",
|
49 |
+
"A man delivers her words at a slightly slow pace in a small, confined space with a touch of background noise and a quite monotone tone.",
|
50 |
+
15.0,
|
51 |
+
],
|
52 |
+
[
|
53 |
+
"Where did we go wrong? In the story we've outgrown, Now I'm left to sing alone, In a world so cold and stone.",
|
54 |
+
"A woman delivers her words at a fast pace and an animated tone, in a very spacious environment, in a very clear voice and audio quality.",
|
55 |
+
15.0,
|
56 |
+
],
|
57 |
+
]
|
58 |
+
|
59 |
+
|
60 |
+
class ParlerTTSStreamer(BaseStreamer):
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
model: ParlerTTSForConditionalGeneration,
|
64 |
+
device: Optional[str] = None,
|
65 |
+
play_steps: Optional[int] = 10,
|
66 |
+
stride: Optional[int] = None,
|
67 |
+
timeout: Optional[float] = None,
|
68 |
+
):
|
69 |
+
"""
|
70 |
+
Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is
|
71 |
+
useful for applications that benefit from accessing the generated audio in a non-blocking way (e.g. in an interactive
|
72 |
+
Gradio demo).
|
73 |
+
Parameters:
|
74 |
+
model (`ParlerTTSForConditionalGeneration`):
|
75 |
+
The Parler-TTS model used to generate the audio waveform.
|
76 |
+
device (`str`, *optional*):
|
77 |
+
The torch device on which to run the computation. If `None`, will default to the device of the model.
|
78 |
+
play_steps (`int`, *optional*, defaults to 10):
|
79 |
+
The number of generation steps with which to return the generated audio array. Using fewer steps will
|
80 |
+
mean the first chunk is ready faster, but will require more codec decoding steps overall. This value
|
81 |
+
should be tuned to your device and latency requirements.
|
82 |
+
stride (`int`, *optional*):
|
83 |
+
The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces
|
84 |
+
the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to
|
85 |
+
play_steps // 6 in the audio space.
|
86 |
+
timeout (`int`, *optional*):
|
87 |
+
The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
|
88 |
+
in `.generate()`, when it is called in a separate thread.
|
89 |
+
"""
|
90 |
+
self.decoder = model.decoder
|
91 |
+
self.audio_encoder = model.audio_encoder
|
92 |
+
self.generation_config = model.generation_config
|
93 |
+
self.device = device if device is not None else model.device
|
94 |
+
|
95 |
+
# variables used in the streaming process
|
96 |
+
self.play_steps = play_steps
|
97 |
+
if stride is not None:
|
98 |
+
self.stride = stride
|
99 |
+
else:
|
100 |
+
hop_length = math.floor(self.audio_encoder.config.sampling_rate / self.audio_encoder.config.frame_rate)
|
101 |
+
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
|
102 |
+
self.token_cache = None
|
103 |
+
self.to_yield = 0
|
104 |
+
|
105 |
+
# varibles used in the thread process
|
106 |
+
self.audio_queue = Queue()
|
107 |
+
self.stop_signal = None
|
108 |
+
self.timeout = timeout
|
109 |
+
|
110 |
+
def apply_delay_pattern_mask(self, input_ids):
|
111 |
+
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Parler)
|
112 |
+
_, delay_pattern_mask = self.decoder.build_delay_pattern_mask(
|
113 |
+
input_ids[:, :1],
|
114 |
+
bos_token_id=self.generation_config.bos_token_id,
|
115 |
+
pad_token_id=self.generation_config.decoder_start_token_id,
|
116 |
+
max_length=input_ids.shape[-1],
|
117 |
+
)
|
118 |
+
# apply the pattern mask to the input ids
|
119 |
+
input_ids = self.decoder.apply_delay_pattern_mask(input_ids, delay_pattern_mask)
|
120 |
+
|
121 |
+
# revert the pattern delay mask by filtering the pad token id
|
122 |
+
mask = (delay_pattern_mask != self.generation_config.bos_token_id) & (delay_pattern_mask != self.generation_config.pad_token_id)
|
123 |
+
input_ids = input_ids[mask].reshape(1, self.decoder.num_codebooks, -1)
|
124 |
+
# append the frame dimension back to the audio codes
|
125 |
+
input_ids = input_ids[None, ...]
|
126 |
+
|
127 |
+
# send the input_ids to the correct device
|
128 |
+
input_ids = input_ids.to(self.audio_encoder.device)
|
129 |
+
|
130 |
+
decode_sequentially = (
|
131 |
+
self.generation_config.bos_token_id in input_ids
|
132 |
+
or self.generation_config.pad_token_id in input_ids
|
133 |
+
or self.generation_config.eos_token_id in input_ids
|
134 |
+
)
|
135 |
+
if not decode_sequentially:
|
136 |
+
output_values = self.audio_encoder.decode(
|
137 |
+
input_ids,
|
138 |
+
audio_scales=[None],
|
139 |
+
)
|
140 |
+
else:
|
141 |
+
sample = input_ids[:, 0]
|
142 |
+
sample_mask = (sample >= self.audio_encoder.config.codebook_size).sum(dim=(0, 1)) == 0
|
143 |
+
sample = sample[:, :, sample_mask]
|
144 |
+
output_values = self.audio_encoder.decode(sample[None, ...], [None])
|
145 |
+
|
146 |
+
audio_values = output_values.audio_values[0, 0]
|
147 |
+
return audio_values.cpu().float().numpy()
|
148 |
+
|
149 |
+
def put(self, value):
|
150 |
+
batch_size = value.shape[0] // self.decoder.num_codebooks
|
151 |
+
if batch_size > 1:
|
152 |
+
raise ValueError("ParlerTTSStreamer only supports batch size 1")
|
153 |
+
|
154 |
+
if self.token_cache is None:
|
155 |
+
self.token_cache = value
|
156 |
+
else:
|
157 |
+
self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1)
|
158 |
+
|
159 |
+
if self.token_cache.shape[-1] % self.play_steps == 0:
|
160 |
+
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
161 |
+
self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
|
162 |
+
self.to_yield += len(audio_values) - self.to_yield - self.stride
|
163 |
+
|
164 |
+
def end(self):
|
165 |
+
"""Flushes any remaining cache and appends the stop symbol."""
|
166 |
+
if self.token_cache is not None:
|
167 |
+
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
168 |
+
else:
|
169 |
+
audio_values = np.zeros(self.to_yield)
|
170 |
+
|
171 |
+
self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True)
|
172 |
+
|
173 |
+
def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
|
174 |
+
"""Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue."""
|
175 |
+
self.audio_queue.put(audio, timeout=self.timeout)
|
176 |
+
if stream_end:
|
177 |
+
self.audio_queue.put(self.stop_signal, timeout=self.timeout)
|
178 |
+
|
179 |
+
def __iter__(self):
|
180 |
+
return self
|
181 |
+
|
182 |
+
def __next__(self):
|
183 |
+
value = self.audio_queue.get(timeout=self.timeout)
|
184 |
+
if not isinstance(value, np.ndarray) and value == self.stop_signal:
|
185 |
+
raise StopIteration()
|
186 |
+
else:
|
187 |
+
return value
|
188 |
+
|
189 |
+
|
190 |
+
sampling_rate = model.audio_encoder.config.sampling_rate
|
191 |
+
frame_rate = model.audio_encoder.config.frame_rate
|
192 |
+
|
193 |
+
@spaces.GPU
|
194 |
+
def generate_base(text, description, play_steps_in_s=2.0):
|
195 |
+
play_steps = int(frame_rate * play_steps_in_s)
|
196 |
+
streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
|
197 |
+
|
198 |
+
inputs = tokenizer(description, return_tensors="pt").to(device)
|
199 |
+
prompt = tokenizer(text, return_tensors="pt").to(device)
|
200 |
+
|
201 |
+
generation_kwargs = dict(
|
202 |
+
input_ids=inputs.input_ids,
|
203 |
+
prompt_input_ids=prompt.input_ids,
|
204 |
+
streamer=streamer,
|
205 |
+
do_sample=True,
|
206 |
+
temperature=1.0,
|
207 |
+
min_new_tokens=10,
|
208 |
+
)
|
209 |
+
|
210 |
+
set_seed(SEED)
|
211 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
212 |
+
thread.start()
|
213 |
+
|
214 |
+
for new_audio in streamer:
|
215 |
+
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
|
216 |
+
yield sampling_rate, new_audio
|
217 |
+
|
218 |
+
@spaces.GPU
|
219 |
+
def generate_custom(text, description, play_steps_in_s=2.0):
|
220 |
+
play_steps = int(frame_rate * play_steps_in_s)
|
221 |
+
streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
|
222 |
+
|
223 |
+
inputs = tokenizer(description, return_tensors="pt").to(device)
|
224 |
+
prompt = tokenizer(text, return_tensors="pt").to(device)
|
225 |
+
|
226 |
+
generation_kwargs = dict(
|
227 |
+
input_ids=inputs.input_ids,
|
228 |
+
prompt_input_ids=prompt.input_ids,
|
229 |
+
streamer=streamer,
|
230 |
+
do_sample=True,
|
231 |
+
temperature=1.0,
|
232 |
+
min_new_tokens=10,
|
233 |
+
)
|
234 |
+
|
235 |
+
set_seed(SEED)
|
236 |
+
thread = Thread(target=custom_model.generate, kwargs=generation_kwargs)
|
237 |
+
thread.start()
|
238 |
+
|
239 |
+
for new_audio in streamer:
|
240 |
+
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
|
241 |
+
yield sampling_rate, new_audio
|
242 |
+
|
243 |
+
|
244 |
+
css = """
|
245 |
+
#share-btn-container {
|
246 |
+
display: flex;
|
247 |
+
padding-left: 0.5rem !important;
|
248 |
+
padding-right: 0.5rem !important;
|
249 |
+
background-color: #000000;
|
250 |
+
justify-content: center;
|
251 |
+
align-items: center;
|
252 |
+
border-radius: 9999px !important;
|
253 |
+
width: 13rem;
|
254 |
+
margin-top: 10px;
|
255 |
+
margin-left: auto;
|
256 |
+
flex: unset !important;
|
257 |
+
}
|
258 |
+
#share-btn {
|
259 |
+
all: initial;
|
260 |
+
color: #ffffff;
|
261 |
+
font-weight: 600;
|
262 |
+
cursor: pointer;
|
263 |
+
font-family: 'IBM Plex Sans', sans-serif;
|
264 |
+
margin-left: 0.5rem !important;
|
265 |
+
padding-top: 0.25rem !important;
|
266 |
+
padding-bottom: 0.25rem !important;
|
267 |
+
right:0;
|
268 |
+
}
|
269 |
+
#share-btn * {
|
270 |
+
all: unset !important;
|
271 |
+
}
|
272 |
+
#share-btn-container div:nth-child(-n+2){
|
273 |
+
width: auto !important;
|
274 |
+
min-height: 0px !important;
|
275 |
+
}
|
276 |
+
#share-btn-container .wrap {
|
277 |
+
display: none !important;
|
278 |
+
}
|
279 |
+
"""
|
280 |
+
with gr.Blocks(css=css) as block:
|
281 |
+
gr.HTML(
|
282 |
+
"""
|
283 |
+
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
|
284 |
+
<div
|
285 |
+
style="
|
286 |
+
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
|
287 |
+
"
|
288 |
+
>
|
289 |
+
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
|
290 |
+
Parler-TTS 🗣️
|
291 |
+
</h1>
|
292 |
+
</div>
|
293 |
+
</div>
|
294 |
+
"""
|
295 |
+
)
|
296 |
+
gr.HTML(
|
297 |
+
f"""
|
298 |
+
<p><a href="https://github.com/huggingface/parler-tts"> Parler-TTS + Vocals</a> is a training and inference library for
|
299 |
+
high-fidelity text-to-speech (TTS) models. Generates high-quality vocals with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation).</p>
|
300 |
+
|
301 |
+
<p>Tips for ensuring good generation:
|
302 |
+
<ul>
|
303 |
+
<li>Include the term <b>"very clear audio"</b> to generate the highest quality audio, and "very noisy audio" for high levels of background noise</li>
|
304 |
+
<li>Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech</li>
|
305 |
+
<li>The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt</li>
|
306 |
+
</ul>
|
307 |
+
</p>
|
308 |
+
"""
|
309 |
+
)
|
310 |
+
with gr.Tab("Base"):
|
311 |
+
with gr.Row():
|
312 |
+
with gr.Column():
|
313 |
+
input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
|
314 |
+
description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
|
315 |
+
play_seconds = gr.Slider(3.0, 10.0, value=5.0, step=0.5, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps")
|
316 |
+
run_button = gr.Button("Generate Audio", variant="primary")
|
317 |
+
with gr.Column():
|
318 |
+
audio_out = gr.Audio(label="Parler-TTS + Vocals", type="numpy", elem_id="audio_out", streaming=True, autoplay=True)
|
319 |
+
|
320 |
+
inputs = [input_text, description, play_seconds]
|
321 |
+
outputs = [audio_out]
|
322 |
+
gr.Examples(examples=examples, fn=generate_base, inputs=inputs, outputs=outputs, cache_examples=False)
|
323 |
+
run_button.click(fn=generate_base, inputs=inputs, outputs=outputs, queue=True)
|
324 |
+
|
325 |
+
block.queue()
|
326 |
+
block.launch(share=True)
|