import gradio as gr import torch #from torch import autocast // only for GPU from PIL import Image import numpy as np from io import BytesIO import os MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD') #from diffusers import StableDiffusionPipeline from diffusers import StableDiffusionImg2ImgPipeline def empty_checker(images, **kwargs): return images, False print("hello") YOUR_TOKEN=MY_SECRET_TOKEN device="cpu" # img2img pipeline img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("AkiKagura/mkgen-diffusion", duse_auth_token=YOUR_TOKEN) img_pipe.safety_checker = empty_checker img_pipe.to(device) source_img = gr.Image(source="upload", type="filepath", label="init_img") gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[1], height="auto") def resize(img): #baseheight = value img = Image.open(img) #hpercent = (baseheight/float(img.size[1])) #wsize = int((float(img.size[0])*float(hpercent))) #img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS) hsize = img.size[1] wsize = img.size[0] if 6*wsize <= 5*hsize: wsize = 512 hsize = 768 elif 4*wsize >= 5*hsize: wsize = 768 hsize = 512 else: wsize = 512 hsize = 512 img = img.resize((wsize,hsize), Image.Resampling.LANCZOS) return img, wsize, hsize def infer(source_img, prompt, guide, steps, seed, strength): generator = torch.Generator('cpu').manual_seed(seed) source_image, img_w, img_h = resize(source_img) source_image.save('source.png') images_list = img_pipe([prompt] * 1, init_image=source_image, strength=strength, guidance_scale=guide, num_inference_steps=steps, width=img_w, height=img_h) images = [] for i, image in enumerate(images_list["images"]): images.append(image) return images print("done") title="Marco Generation Img2img" description="

Upload your image and input 'mkmk woman' to get Marco image.
Warning: Slow process... about 10 min inference time.

" gr.Interface(fn=infer, inputs=[source_img, "text", gr.Slider(2, 15, value = 7, label = 'Guidence Scale'), gr.Slider(10, 50, value = 25, step = 1, label = 'Number of Iterations'), gr.Slider(label = "Seed", minimum = 0, maximum = 2147483647, step = 1, randomize = True), gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .75)], outputs=gallery,title=title,description=description, allow_flagging="manual", flagging_dir="flagged").queue(max_size=100).launch(enable_queue=True)