|
import math |
|
import os |
|
import random |
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
import torch.utils.data |
|
import numpy as np |
|
import librosa |
|
import librosa.util as librosa_util |
|
from librosa.util import normalize, pad_center, tiny |
|
from scipy.signal import get_window |
|
from scipy.io.wavfile import read |
|
from librosa.filters import mel as librosa_mel_fn |
|
|
|
MAX_WAV_VALUE = 32768.0 |
|
|
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): |
|
""" |
|
PARAMS |
|
------ |
|
C: compression factor |
|
""" |
|
return torch.log(torch.clamp(x, min=clip_val) * C) |
|
|
|
|
|
def dynamic_range_decompression_torch(x, C=1): |
|
""" |
|
PARAMS |
|
------ |
|
C: compression factor used to compress |
|
""" |
|
return torch.exp(x) / C |
|
|
|
|
|
def spectral_normalize_torch(magnitudes): |
|
output = dynamic_range_compression_torch(magnitudes) |
|
return output |
|
|
|
|
|
def spectral_de_normalize_torch(magnitudes): |
|
output = dynamic_range_decompression_torch(magnitudes) |
|
return output |
|
|
|
|
|
mel_basis = {} |
|
hann_window = {} |
|
|
|
|
|
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): |
|
if torch.min(y) < -1.: |
|
print('min value is ', torch.min(y)) |
|
if torch.max(y) > 1.: |
|
print('max value is ', torch.max(y)) |
|
|
|
global hann_window |
|
dtype_device = str(y.dtype) + '_' + str(y.device) |
|
wnsize_dtype_device = str(win_size) + '_' + dtype_device |
|
if wnsize_dtype_device not in hann_window: |
|
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) |
|
|
|
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') |
|
y = y.squeeze(1) |
|
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], |
|
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False) |
|
|
|
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) |
|
return spec |
|
|
|
|
|
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax): |
|
global mel_basis |
|
dtype_device = str(spec.dtype) + '_' + str(spec.device) |
|
fmax_dtype_device = str(fmax) + '_' + dtype_device |
|
if fmax_dtype_device not in mel_basis: |
|
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) |
|
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device) |
|
spec = torch.matmul(mel_basis[fmax_dtype_device], spec) |
|
spec = spectral_normalize_torch(spec) |
|
return spec |
|
|
|
|
|
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): |
|
if torch.min(y) < -1.: |
|
print('min value is ', torch.min(y)) |
|
if torch.max(y) > 1.: |
|
print('max value is ', torch.max(y)) |
|
|
|
global mel_basis, hann_window |
|
dtype_device = str(y.dtype) + '_' + str(y.device) |
|
fmax_dtype_device = str(fmax) + '_' + dtype_device |
|
wnsize_dtype_device = str(win_size) + '_' + dtype_device |
|
if fmax_dtype_device not in mel_basis: |
|
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) |
|
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device) |
|
if wnsize_dtype_device not in hann_window: |
|
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) |
|
|
|
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') |
|
y = y.squeeze(1) |
|
|
|
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], |
|
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False) |
|
|
|
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) |
|
|
|
spec = torch.matmul(mel_basis[fmax_dtype_device], spec) |
|
spec = spectral_normalize_torch(spec) |
|
|
|
return spec |
|
|