|
import pickle |
|
import os |
|
import re |
|
from g2p_en import G2p |
|
|
|
from string import punctuation |
|
|
|
from text import symbols |
|
|
|
current_file_path = os.path.dirname(__file__) |
|
CMU_DICT_PATH = os.path.join(current_file_path, 'cmudict.rep') |
|
CACHE_PATH = os.path.join(current_file_path, 'cmudict_cache.pickle') |
|
_g2p = G2p() |
|
|
|
arpa = {'AH0', 'S', 'AH1', 'EY2', 'AE2', 'EH0', 'OW2', 'UH0', 'NG', 'B', 'G', 'AY0', 'M', 'AA0', 'F', 'AO0', 'ER2', 'UH1', 'IY1', 'AH2', 'DH', 'IY0', 'EY1', 'IH0', 'K', 'N', 'W', 'IY2', 'T', 'AA1', 'ER1', 'EH2', 'OY0', 'UH2', 'UW1', 'Z', 'AW2', 'AW1', 'V', 'UW2', 'AA2', 'ER', 'AW0', 'UW0', 'R', 'OW1', 'EH1', 'ZH', 'AE0', 'IH2', 'IH', 'Y', 'JH', 'P', 'AY1', 'EY0', 'OY2', 'TH', 'HH', 'D', 'ER0', 'CH', 'AO1', 'AE1', 'AO2', 'OY1', 'AY2', 'IH1', 'OW0', 'L', 'SH'} |
|
|
|
|
|
def replace_phs(phs): |
|
rep_map = { |
|
';': ',', |
|
':': ',', |
|
'\'': '-', |
|
'"': '-' |
|
} |
|
phs_new = [] |
|
for ph in phs: |
|
if ph in symbols: |
|
phs_new.append(ph) |
|
elif ph in rep_map.keys(): |
|
phs_new.append(rep_map[ph]) |
|
else: |
|
print('ph not in symbols: ', ph) |
|
return phs_new |
|
|
|
def read_dict(): |
|
g2p_dict = {} |
|
start_line = 49 |
|
with open(CMU_DICT_PATH) as f: |
|
line = f.readline() |
|
line_index = 1 |
|
while line: |
|
if line_index >= start_line: |
|
line = line.strip() |
|
word_split = line.split(' ') |
|
word = word_split[0] |
|
|
|
syllable_split = word_split[1].split(' - ') |
|
g2p_dict[word] = [] |
|
for syllable in syllable_split: |
|
phone_split = syllable.split(' ') |
|
g2p_dict[word].append(phone_split) |
|
|
|
line_index = line_index + 1 |
|
line = f.readline() |
|
|
|
return g2p_dict |
|
|
|
|
|
def cache_dict(g2p_dict, file_path): |
|
with open(file_path, 'wb') as pickle_file: |
|
pickle.dump(g2p_dict, pickle_file) |
|
|
|
|
|
def get_dict(): |
|
if os.path.exists(CACHE_PATH): |
|
with open(CACHE_PATH, 'rb') as pickle_file: |
|
g2p_dict = pickle.load(pickle_file) |
|
else: |
|
g2p_dict = read_dict() |
|
cache_dict(g2p_dict, CACHE_PATH) |
|
|
|
return g2p_dict |
|
|
|
eng_dict = get_dict() |
|
|
|
|
|
def text_normalize(text): |
|
|
|
return text.replace(";", ",") |
|
|
|
def g2p(text): |
|
|
|
phones = [] |
|
words = re.split(r"([,;.\-\?\!\s+])", text) |
|
for w in words: |
|
if w.upper() in eng_dict: |
|
phns = eng_dict[w.upper()] |
|
for ph in phns: |
|
phones += ph |
|
else: |
|
phone_list = list(filter(lambda p: p != " ", _g2p(w))) |
|
for ph in phone_list: |
|
if ph in arpa: |
|
phones.append(ph) |
|
else: |
|
phones.append(ph) |
|
|
|
return replace_phs(phones) |
|
|
|
if __name__ == "__main__": |
|
|
|
print(g2p("hello")) |
|
print(g2p("In this; paper, we propose 1 DSPGAN, a GAN-based universal vocoder.")) |
|
|
|
|
|
|
|
|
|
|
|
|