|
import math |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from module import commons |
|
from module. modules import LayerNorm |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4,isflow=False, **kwargs): |
|
super().__init__() |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.window_size = window_size |
|
|
|
self.drop = nn.Dropout(p_dropout) |
|
self.attn_layers = nn.ModuleList() |
|
self.norm_layers_1 = nn.ModuleList() |
|
self.ffn_layers = nn.ModuleList() |
|
self.norm_layers_2 = nn.ModuleList() |
|
for i in range(self.n_layers): |
|
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size)) |
|
self.norm_layers_1.append(LayerNorm(hidden_channels)) |
|
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout)) |
|
self.norm_layers_2.append(LayerNorm(hidden_channels)) |
|
if isflow: |
|
cond_layer = torch.nn.Conv1d(kwargs["gin_channels"], 2*hidden_channels*n_layers, 1) |
|
self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1) |
|
self.cond_layer = weight_norm_modules(cond_layer, name='weight') |
|
self.gin_channels = kwargs["gin_channels"] |
|
def forward(self, x, x_mask, g=None): |
|
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) |
|
x = x * x_mask |
|
if g is not None: |
|
g = self.cond_layer(g) |
|
|
|
for i in range(self.n_layers): |
|
if g is not None: |
|
x = self.cond_pre(x) |
|
cond_offset = i * 2 * self.hidden_channels |
|
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:] |
|
x = commons.fused_add_tanh_sigmoid_multiply( |
|
x, |
|
g_l, |
|
torch.IntTensor([self.hidden_channels])) |
|
y = self.attn_layers[i](x, x, attn_mask) |
|
y = self.drop(y) |
|
x = self.norm_layers_1[i](x + y) |
|
|
|
y = self.ffn_layers[i](x, x_mask) |
|
y = self.drop(y) |
|
x = self.norm_layers_2[i](x + y) |
|
x = x * x_mask |
|
return x |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs): |
|
super().__init__() |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.proximal_bias = proximal_bias |
|
self.proximal_init = proximal_init |
|
|
|
self.drop = nn.Dropout(p_dropout) |
|
self.self_attn_layers = nn.ModuleList() |
|
self.norm_layers_0 = nn.ModuleList() |
|
self.encdec_attn_layers = nn.ModuleList() |
|
self.norm_layers_1 = nn.ModuleList() |
|
self.ffn_layers = nn.ModuleList() |
|
self.norm_layers_2 = nn.ModuleList() |
|
for i in range(self.n_layers): |
|
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init)) |
|
self.norm_layers_0.append(LayerNorm(hidden_channels)) |
|
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout)) |
|
self.norm_layers_1.append(LayerNorm(hidden_channels)) |
|
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True)) |
|
self.norm_layers_2.append(LayerNorm(hidden_channels)) |
|
|
|
def forward(self, x, x_mask, h, h_mask): |
|
""" |
|
x: decoder input |
|
h: encoder output |
|
""" |
|
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype) |
|
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1) |
|
x = x * x_mask |
|
for i in range(self.n_layers): |
|
y = self.self_attn_layers[i](x, x, self_attn_mask) |
|
y = self.drop(y) |
|
x = self.norm_layers_0[i](x + y) |
|
|
|
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask) |
|
y = self.drop(y) |
|
x = self.norm_layers_1[i](x + y) |
|
|
|
y = self.ffn_layers[i](x, x_mask) |
|
y = self.drop(y) |
|
x = self.norm_layers_2[i](x + y) |
|
x = x * x_mask |
|
return x |
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False): |
|
super().__init__() |
|
assert channels % n_heads == 0 |
|
|
|
self.channels = channels |
|
self.out_channels = out_channels |
|
self.n_heads = n_heads |
|
self.p_dropout = p_dropout |
|
self.window_size = window_size |
|
self.heads_share = heads_share |
|
self.block_length = block_length |
|
self.proximal_bias = proximal_bias |
|
self.proximal_init = proximal_init |
|
self.attn = None |
|
|
|
self.k_channels = channels // n_heads |
|
self.conv_q = nn.Conv1d(channels, channels, 1) |
|
self.conv_k = nn.Conv1d(channels, channels, 1) |
|
self.conv_v = nn.Conv1d(channels, channels, 1) |
|
self.conv_o = nn.Conv1d(channels, out_channels, 1) |
|
self.drop = nn.Dropout(p_dropout) |
|
|
|
if window_size is not None: |
|
n_heads_rel = 1 if heads_share else n_heads |
|
rel_stddev = self.k_channels**-0.5 |
|
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) |
|
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) |
|
|
|
nn.init.xavier_uniform_(self.conv_q.weight) |
|
nn.init.xavier_uniform_(self.conv_k.weight) |
|
nn.init.xavier_uniform_(self.conv_v.weight) |
|
if proximal_init: |
|
with torch.no_grad(): |
|
self.conv_k.weight.copy_(self.conv_q.weight) |
|
self.conv_k.bias.copy_(self.conv_q.bias) |
|
|
|
def forward(self, x, c, attn_mask=None): |
|
q = self.conv_q(x) |
|
k = self.conv_k(c) |
|
v = self.conv_v(c) |
|
|
|
x, self.attn = self.attention(q, k, v, mask=attn_mask) |
|
|
|
x = self.conv_o(x) |
|
return x |
|
|
|
def attention(self, query, key, value, mask=None): |
|
|
|
b, d, t_s, t_t = (*key.size(), query.size(2)) |
|
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) |
|
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) |
|
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) |
|
|
|
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) |
|
if self.window_size is not None: |
|
assert t_s == t_t, "Relative attention is only available for self-attention." |
|
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) |
|
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings) |
|
scores_local = self._relative_position_to_absolute_position(rel_logits) |
|
scores = scores + scores_local |
|
if self.proximal_bias: |
|
assert t_s == t_t, "Proximal bias is only available for self-attention." |
|
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype) |
|
if mask is not None: |
|
scores = scores.masked_fill(mask == 0, -1e4) |
|
if self.block_length is not None: |
|
assert t_s == t_t, "Local attention is only available for self-attention." |
|
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length) |
|
scores = scores.masked_fill(block_mask == 0, -1e4) |
|
p_attn = F.softmax(scores, dim=-1) |
|
p_attn = self.drop(p_attn) |
|
output = torch.matmul(p_attn, value) |
|
if self.window_size is not None: |
|
relative_weights = self._absolute_position_to_relative_position(p_attn) |
|
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) |
|
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) |
|
output = output.transpose(2, 3).contiguous().view(b, d, t_t) |
|
return output, p_attn |
|
|
|
def _matmul_with_relative_values(self, x, y): |
|
""" |
|
x: [b, h, l, m] |
|
y: [h or 1, m, d] |
|
ret: [b, h, l, d] |
|
""" |
|
ret = torch.matmul(x, y.unsqueeze(0)) |
|
return ret |
|
|
|
def _matmul_with_relative_keys(self, x, y): |
|
""" |
|
x: [b, h, l, d] |
|
y: [h or 1, m, d] |
|
ret: [b, h, l, m] |
|
""" |
|
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) |
|
return ret |
|
|
|
def _get_relative_embeddings(self, relative_embeddings, length): |
|
max_relative_position = 2 * self.window_size + 1 |
|
|
|
pad_length = max(length - (self.window_size + 1), 0) |
|
slice_start_position = max((self.window_size + 1) - length, 0) |
|
slice_end_position = slice_start_position + 2 * length - 1 |
|
if pad_length > 0: |
|
padded_relative_embeddings = F.pad( |
|
relative_embeddings, |
|
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]])) |
|
else: |
|
padded_relative_embeddings = relative_embeddings |
|
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position] |
|
return used_relative_embeddings |
|
|
|
def _relative_position_to_absolute_position(self, x): |
|
""" |
|
x: [b, h, l, 2*l-1] |
|
ret: [b, h, l, l] |
|
""" |
|
batch, heads, length, _ = x.size() |
|
|
|
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])) |
|
|
|
|
|
x_flat = x.view([batch, heads, length * 2 * length]) |
|
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])) |
|
|
|
|
|
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:] |
|
return x_final |
|
|
|
def _absolute_position_to_relative_position(self, x): |
|
""" |
|
x: [b, h, l, l] |
|
ret: [b, h, l, 2*l-1] |
|
""" |
|
batch, heads, length, _ = x.size() |
|
|
|
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])) |
|
x_flat = x.view([batch, heads, length**2 + length*(length -1)]) |
|
|
|
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])) |
|
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:] |
|
return x_final |
|
|
|
def _attention_bias_proximal(self, length): |
|
"""Bias for self-attention to encourage attention to close positions. |
|
Args: |
|
length: an integer scalar. |
|
Returns: |
|
a Tensor with shape [1, 1, length, length] |
|
""" |
|
r = torch.arange(length, dtype=torch.float32) |
|
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) |
|
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) |
|
|
|
|
|
class FFN(nn.Module): |
|
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.filter_channels = filter_channels |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.activation = activation |
|
self.causal = causal |
|
|
|
if causal: |
|
self.padding = self._causal_padding |
|
else: |
|
self.padding = self._same_padding |
|
|
|
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) |
|
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) |
|
self.drop = nn.Dropout(p_dropout) |
|
|
|
def forward(self, x, x_mask): |
|
x = self.conv_1(self.padding(x * x_mask)) |
|
if self.activation == "gelu": |
|
x = x * torch.sigmoid(1.702 * x) |
|
else: |
|
x = torch.relu(x) |
|
x = self.drop(x) |
|
x = self.conv_2(self.padding(x * x_mask)) |
|
return x * x_mask |
|
|
|
def _causal_padding(self, x): |
|
if self.kernel_size == 1: |
|
return x |
|
pad_l = self.kernel_size - 1 |
|
pad_r = 0 |
|
padding = [[0, 0], [0, 0], [pad_l, pad_r]] |
|
x = F.pad(x, commons.convert_pad_shape(padding)) |
|
return x |
|
|
|
def _same_padding(self, x): |
|
if self.kernel_size == 1: |
|
return x |
|
pad_l = (self.kernel_size - 1) // 2 |
|
pad_r = self.kernel_size // 2 |
|
padding = [[0, 0], [0, 0], [pad_l, pad_r]] |
|
x = F.pad(x, commons.convert_pad_shape(padding)) |
|
return x |
|
|
|
|
|
import torch.nn as nn |
|
from torch.nn.utils import remove_weight_norm, weight_norm |
|
|
|
|
|
class Depthwise_Separable_Conv1D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
bias=True, |
|
padding_mode='zeros', |
|
device=None, |
|
dtype=None |
|
): |
|
super().__init__() |
|
self.depth_conv = nn.Conv1d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, |
|
groups=in_channels, stride=stride, padding=padding, dilation=dilation, bias=bias, |
|
padding_mode=padding_mode, device=device, dtype=dtype) |
|
self.point_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias, |
|
device=device, dtype=dtype) |
|
|
|
def forward(self, input): |
|
return self.point_conv(self.depth_conv(input)) |
|
|
|
def weight_norm(self): |
|
self.depth_conv = weight_norm(self.depth_conv, name='weight') |
|
self.point_conv = weight_norm(self.point_conv, name='weight') |
|
|
|
def remove_weight_norm(self): |
|
self.depth_conv = remove_weight_norm(self.depth_conv, name='weight') |
|
self.point_conv = remove_weight_norm(self.point_conv, name='weight') |
|
|
|
|
|
class Depthwise_Separable_TransposeConv1D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
output_padding=0, |
|
bias=True, |
|
dilation=1, |
|
padding_mode='zeros', |
|
device=None, |
|
dtype=None |
|
): |
|
super().__init__() |
|
self.depth_conv = nn.ConvTranspose1d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, |
|
groups=in_channels, stride=stride, output_padding=output_padding, |
|
padding=padding, dilation=dilation, bias=bias, padding_mode=padding_mode, |
|
device=device, dtype=dtype) |
|
self.point_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias, |
|
device=device, dtype=dtype) |
|
|
|
def forward(self, input): |
|
return self.point_conv(self.depth_conv(input)) |
|
|
|
def weight_norm(self): |
|
self.depth_conv = weight_norm(self.depth_conv, name='weight') |
|
self.point_conv = weight_norm(self.point_conv, name='weight') |
|
|
|
def remove_weight_norm(self): |
|
remove_weight_norm(self.depth_conv, name='weight') |
|
remove_weight_norm(self.point_conv, name='weight') |
|
|
|
|
|
def weight_norm_modules(module, name='weight', dim=0): |
|
if isinstance(module, Depthwise_Separable_Conv1D) or isinstance(module, Depthwise_Separable_TransposeConv1D): |
|
module.weight_norm() |
|
return module |
|
else: |
|
return weight_norm(module, name, dim) |
|
|
|
|
|
def remove_weight_norm_modules(module, name='weight'): |
|
if isinstance(module, Depthwise_Separable_Conv1D) or isinstance(module, Depthwise_Separable_TransposeConv1D): |
|
module.remove_weight_norm() |
|
else: |
|
remove_weight_norm(module, name) |
|
|
|
|
|
class FFT(nn.Module): |
|
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0., |
|
proximal_bias=False, proximal_init=True, isflow = False, **kwargs): |
|
super().__init__() |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.proximal_bias = proximal_bias |
|
self.proximal_init = proximal_init |
|
if isflow: |
|
cond_layer = torch.nn.Conv1d(kwargs["gin_channels"], 2*hidden_channels*n_layers, 1) |
|
self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1) |
|
self.cond_layer = weight_norm_modules(cond_layer, name='weight') |
|
self.gin_channels = kwargs["gin_channels"] |
|
self.drop = nn.Dropout(p_dropout) |
|
self.self_attn_layers = nn.ModuleList() |
|
self.norm_layers_0 = nn.ModuleList() |
|
self.ffn_layers = nn.ModuleList() |
|
self.norm_layers_1 = nn.ModuleList() |
|
for i in range(self.n_layers): |
|
self.self_attn_layers.append( |
|
MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, |
|
proximal_init=proximal_init)) |
|
self.norm_layers_0.append(LayerNorm(hidden_channels)) |
|
self.ffn_layers.append( |
|
FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True)) |
|
self.norm_layers_1.append(LayerNorm(hidden_channels)) |
|
|
|
def forward(self, x, x_mask, g = None): |
|
""" |
|
x: decoder input |
|
h: encoder output |
|
""" |
|
if g is not None: |
|
g = self.cond_layer(g) |
|
|
|
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype) |
|
x = x * x_mask |
|
for i in range(self.n_layers): |
|
if g is not None: |
|
x = self.cond_pre(x) |
|
cond_offset = i * 2 * self.hidden_channels |
|
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:] |
|
x = commons.fused_add_tanh_sigmoid_multiply( |
|
x, |
|
g_l, |
|
torch.IntTensor([self.hidden_channels])) |
|
y = self.self_attn_layers[i](x, x, self_attn_mask) |
|
y = self.drop(y) |
|
x = self.norm_layers_0[i](x + y) |
|
|
|
y = self.ffn_layers[i](x, x_mask) |
|
y = self.drop(y) |
|
x = self.norm_layers_1[i](x + y) |
|
x = x * x_mask |
|
return x |
|
|
|
|
|
|
|
class TransformerCouplingLayer(nn.Module): |
|
def __init__(self, |
|
channels, |
|
hidden_channels, |
|
kernel_size, |
|
n_layers, |
|
n_heads, |
|
p_dropout=0, |
|
filter_channels=0, |
|
mean_only=False, |
|
wn_sharing_parameter=None, |
|
gin_channels = 0 |
|
): |
|
assert channels % 2 == 0, "channels should be divisible by 2" |
|
super().__init__() |
|
self.channels = channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.n_layers = n_layers |
|
self.half_channels = channels // 2 |
|
self.mean_only = mean_only |
|
|
|
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) |
|
self.enc = Encoder(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, isflow = True, gin_channels = gin_channels) if wn_sharing_parameter is None else wn_sharing_parameter |
|
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) |
|
self.post.weight.data.zero_() |
|
self.post.bias.data.zero_() |
|
|
|
def forward(self, x, x_mask, g=None, reverse=False): |
|
x0, x1 = torch.split(x, [self.half_channels]*2, 1) |
|
h = self.pre(x0) * x_mask |
|
h = self.enc(h, x_mask, g=g) |
|
stats = self.post(h) * x_mask |
|
if not self.mean_only: |
|
m, logs = torch.split(stats, [self.half_channels]*2, 1) |
|
else: |
|
m = stats |
|
logs = torch.zeros_like(m) |
|
|
|
if not reverse: |
|
x1 = m + x1 * torch.exp(logs) * x_mask |
|
x = torch.cat([x0, x1], 1) |
|
logdet = torch.sum(logs, [1,2]) |
|
return x, logdet |
|
else: |
|
x1 = (x1 - m) * torch.exp(-logs) * x_mask |
|
x = torch.cat([x0, x1], 1) |
|
return x |