Spaces:
Running
on
Zero
Running
on
Zero
add mask
Browse files
app.py
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
import spaces
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import re
|
4 |
from PIL import Image
|
@@ -22,7 +25,7 @@ def process_images(image, image2=None,prompt="a girl",inpaint_model="black-fores
|
|
22 |
if not isinstance(image, dict):
|
23 |
if image2 == None:
|
24 |
print("empty mask")
|
25 |
-
return image
|
26 |
else:
|
27 |
image = dict({'background': image, 'layers': [image2]})
|
28 |
|
@@ -37,9 +40,25 @@ def process_images(image, image2=None,prompt="a girl",inpaint_model="black-fores
|
|
37 |
mask = image['layers'][0]
|
38 |
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
output = flux1_inpaint.process_image(image["background"],mask,prompt,inpaint_model,strength,seed)
|
41 |
|
42 |
-
return output
|
43 |
|
44 |
|
45 |
def read_file(path: str) -> str:
|
@@ -91,12 +110,13 @@ with demo_blocks as demo:
|
|
91 |
id_input=gr.Text(label="Name", visible=False)
|
92 |
|
93 |
with gr.Column():
|
94 |
-
image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="
|
|
|
95 |
|
96 |
|
97 |
|
98 |
|
99 |
-
btn.click(fn=process_images, inputs=[image, image_mask,prompt,inpaint_model,strength,seed], outputs =image_out, api_name='infer')
|
100 |
gr.Examples(
|
101 |
examples=[
|
102 |
["images/00547245_99.jpg", "images/00547245_99_mask.jpg","a beautiful girl,eyes closed",0.8,"images/00547245.jpg"],
|
|
|
1 |
import spaces
|
2 |
+
import torch
|
3 |
+
from diffusers import FluxInpaintPipeline
|
4 |
+
|
5 |
import gradio as gr
|
6 |
import re
|
7 |
from PIL import Image
|
|
|
25 |
if not isinstance(image, dict):
|
26 |
if image2 == None:
|
27 |
print("empty mask")
|
28 |
+
return image,None
|
29 |
else:
|
30 |
image = dict({'background': image, 'layers': [image2]})
|
31 |
|
|
|
40 |
mask = image['layers'][0]
|
41 |
|
42 |
|
43 |
+
def process_image(image,mask_image,prompt="a person",model_id="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,num_inference_steps=4):
|
44 |
+
if image == None:
|
45 |
+
return None
|
46 |
+
|
47 |
+
pipe = FluxInpaintPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
48 |
+
pipe.to("cuda")
|
49 |
+
|
50 |
+
generators = []
|
51 |
+
generator = torch.Generator("cuda").manual_seed(seed)
|
52 |
+
generators.append(generator)
|
53 |
+
# more parameter see https://huggingface.co/docs/diffusers/api/pipelines/flux#diffusers.FluxInpaintPipeline
|
54 |
+
output = pipe(prompt=prompt, image=image, mask_image=mask_image,generator=generator,strength=strength)
|
55 |
+
|
56 |
+
return output.images[0]
|
57 |
+
|
58 |
+
|
59 |
output = flux1_inpaint.process_image(image["background"],mask,prompt,inpaint_model,strength,seed)
|
60 |
|
61 |
+
return output,mask
|
62 |
|
63 |
|
64 |
def read_file(path: str) -> str:
|
|
|
110 |
id_input=gr.Text(label="Name", visible=False)
|
111 |
|
112 |
with gr.Column():
|
113 |
+
image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="webp")
|
114 |
+
mask_out = gr.Image(height=800,sources=[],label="Mask", elem_id="mask-img",format="jpeg")
|
115 |
|
116 |
|
117 |
|
118 |
|
119 |
+
btn.click(fn=process_images, inputs=[image, image_mask,prompt,inpaint_model,strength,seed], outputs =[image_out,mask_out], api_name='infer')
|
120 |
gr.Examples(
|
121 |
examples=[
|
122 |
["images/00547245_99.jpg", "images/00547245_99_mask.jpg","a beautiful girl,eyes closed",0.8,"images/00547245.jpg"],
|