File size: 7,920 Bytes
f3aed8f 93ab959 f3aed8f 4635702 f3aed8f 93ab959 4635702 93ab959 f3aed8f 217cf5d f3aed8f 217cf5d f3aed8f 4635702 f3aed8f 4635702 f3aed8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import spaces
import gradio as gr
import subprocess
from PIL import Image
import json
import os
import time
import mp_box
import draw_landmarks68
'''
Face landmark detection based Face Detection.
https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker
from model card
https://storage.googleapis.com/mediapipe-assets/MediaPipe%20BlazeFace%20Model%20Card%20(Short%20Range).pdf
Licensed Apache License, Version 2.0
Train with google's dataset(more detail see model card)
'''
dir_name ="files"
passed_time = 60*60
def clear_old_files(dir,passed_time):
try:
files = os.listdir(dir)
current_time = time.time()
for file in files:
file_path = os.path.join(dir,file)
ctime = os.stat(file_path).st_ctime
diff = current_time - ctime
#print(f"ctime={ctime},current_time={current_time},passed_time={passed_time},diff={diff}")
if diff > passed_time:
os.remove(file_path)
except:
print("maybe still gallery using error")
def picker_color_to_rgba(picker_color):
color_value = picker_color.strip("rgba()").split(",")
color_value[0] = int(float(color_value[0]))
color_value[1] = int(float(color_value[1]))
color_value[2] = int(float(color_value[2]))
color_value[3] = int(float(color_value[3]))
return color_value
#@spaces.GPU(duration=120)
def process_images(image,draw_number,font_scale,text_color_text,dot_size,dot_color_text,line_size,line_color_text,box_size,box_color_text,json_format,draw_mesh=False,progress=gr.Progress(track_tqdm=True)):
if not os.path.exists(dir_name):
os.mkdir(dir_name)
clear_old_files(dir_name,passed_time)
if image == None:
raise gr.Error("Need Image")
progress(0, desc="Start Mediapipe")
boxes,mp_image,face_landmarker_result = mp_box.mediapipe_to_box(image)
#need only result
text_color = picker_color_to_rgba(text_color_text)
line_color = picker_color_to_rgba(line_color_text)
dot_color = picker_color_to_rgba(dot_color_text)
box_color = picker_color_to_rgba(box_color_text)
if draw_mesh:
image=Image.fromarray(mp_box.draw_landmarks_on_image(face_landmarker_result,image))
annotated_image,bbox,landmark_points = draw_landmarks68.draw_landmarks_on_image(image,face_landmarker_result,draw_number,font_scale,text_color,
dot_size,dot_color,line_size,line_color,
box_size,box_color)
if json_format=="raw":
jsons = landmark_points
else:
jsons=draw_landmarks68.convert_to_landmark_group_json(landmark_points)
#print(annotation_boxes)
formatted_json = json.dumps(jsons)
json_path=create_json_download(formatted_json)
#return image
return annotated_image,jsons,json_path
def write_file(file_path,text):
with open(file_path, 'w', encoding='utf-8') as f:
f.write(text)
def read_file(file_path):
"""read the text of target file
"""
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
css="""
#col-left {
margin: 0 auto;
max-width: 640px;
}
#col-right {
margin: 0 auto;
max-width: 640px;
}
.grid-container {
display: flex;
align-items: center;
justify-content: center;
gap:10px
}
.image {
width: 128px;
height: 128px;
object-fit: cover;
}
.text {
font-size: 16px;
}
"""
#css=css,
import hashlib
def text_to_sha256(text):
text_bytes = text.encode('utf-8')
hash_object = hashlib.sha256()
hash_object.update(text_bytes)
sha256_hex = hash_object.hexdigest()
return sha256_hex
def create_json_download(text):
file_id = f"{dir_name}/landmark_{text_to_sha256(text)[:32]}.json"
write_file(file_id,text)
# try to save
return file_id
with gr.Blocks(css=css, elem_id="demo-container") as demo:
with gr.Column():
gr.HTML(read_file("demo_header.html"))
gr.HTML(read_file("demo_tools.html"))
with gr.Row():
with gr.Column():
image = gr.Image(height=800,sources=['upload','clipboard'],image_mode='RGB',elem_id="image_upload", type="pil", label="Upload")
with gr.Row(elem_id="prompt-container", equal_height=False):
with gr.Row():
btn = gr.Button("Extract Landmark 68", elem_id="run_button",variant="primary")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row( equal_height=True):
draw_number = gr.Checkbox(label="draw Number",value=True)
font_scale = gr.Slider(
label="Font Scale",
minimum=0.1,
maximum=2,
step=0.1,
value=0.5)
text_color = gr.ColorPicker(value="rgba(200,200,200,1)",label="text color")
#square_shape = gr.Checkbox(label="Square shape")
with gr.Row( equal_height=True):
line_color = gr.ColorPicker(value="rgba(0,0,255,1)",label="line color")
line_size = gr.Slider(
label="Line Size",
minimum=0,
maximum=20,
step=1,
value=1)
with gr.Row( equal_height=True):
dot_color = gr.ColorPicker(value="rgba(255,0,0,1)",label="dot color")
dot_size = gr.Slider(
label="Dot Size",
minimum=0,
maximum=40,
step=1,
value=3)
with gr.Row( equal_height=True):
box_color = gr.ColorPicker(value="rgba(200,200,200,1)",label="box color")
box_size = gr.Slider(
label="Box Size",
minimum=0,
maximum=20,
step=1,
value=1)
with gr.Row( equal_height=True):
json_format = gr.Radio(choices=["raw","face-detection"],value="face-detection",label="json-output format")
draw_mesh = gr.Checkbox(value=True,label="draw mesh",info="draw mediapipe mesh")
with gr.Column():
image_out = gr.Image(label="Output", elem_id="output-img")
text_out = gr.TextArea(label="JSON-Output")
download_button = gr.DownloadButton(label="Download JSON" )
#download_button.click(fn=json_download,inputs=text_out,outputs=download_button)
btn.click(fn=process_images, inputs=[image,draw_number,font_scale,text_color,
dot_size,dot_color,line_size,line_color,
box_size,box_color,json_format,draw_mesh], outputs =[image_out,text_out,download_button], api_name='infer')
gr.Examples(
examples =["examples/00003245_00.jpg","examples/00004200.jpg","examples/00005259.jpg","examples/00018022.jpg","examples/img-above.jpg","examples/img-below.jpg","examples/img-side.jpg"],
inputs=[image]
)
gr.HTML(read_file("demo_footer.html"))
if __name__ == "__main__":
demo.launch()
|