File size: 7,920 Bytes
f3aed8f
 
 
 
 
 
 
 
 
93ab959
f3aed8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4635702
f3aed8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93ab959
4635702
 
93ab959
f3aed8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217cf5d
f3aed8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217cf5d
f3aed8f
 
 
 
 
 
 
 
 
 
4635702
f3aed8f
4635702
f3aed8f
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import spaces
import gradio as gr
import subprocess
from PIL import Image
import json
import os
import time
import mp_box
import draw_landmarks68

'''
Face landmark detection based Face Detection.
https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker
from model card
https://storage.googleapis.com/mediapipe-assets/MediaPipe%20BlazeFace%20Model%20Card%20(Short%20Range).pdf
Licensed Apache License, Version 2.0
Train with google's dataset(more detail see model card)

'''

dir_name ="files"
passed_time = 60*60 
def clear_old_files(dir,passed_time):
    try:
        files = os.listdir(dir)
        current_time = time.time()
        for file in files:
            file_path = os.path.join(dir,file)
            
            ctime = os.stat(file_path).st_ctime
            diff = current_time - ctime
            #print(f"ctime={ctime},current_time={current_time},passed_time={passed_time},diff={diff}")
            if diff > passed_time:
                os.remove(file_path)
    except:
            print("maybe still gallery using error")

def picker_color_to_rgba(picker_color):
    color_value = picker_color.strip("rgba()").split(",")
    color_value[0] = int(float(color_value[0]))
    color_value[1] = int(float(color_value[1]))
    color_value[2] = int(float(color_value[2]))
    color_value[3] = int(float(color_value[3]))
    return color_value

#@spaces.GPU(duration=120)
def process_images(image,draw_number,font_scale,text_color_text,dot_size,dot_color_text,line_size,line_color_text,box_size,box_color_text,json_format,draw_mesh=False,progress=gr.Progress(track_tqdm=True)):
    
    if not os.path.exists(dir_name):
        os.mkdir(dir_name)
    clear_old_files(dir_name,passed_time)

    if image == None:
        raise gr.Error("Need Image")

    progress(0, desc="Start Mediapipe")
    

    boxes,mp_image,face_landmarker_result = mp_box.mediapipe_to_box(image)
    #need only result
    text_color = picker_color_to_rgba(text_color_text)
    line_color = picker_color_to_rgba(line_color_text)
    dot_color = picker_color_to_rgba(dot_color_text)
    box_color = picker_color_to_rgba(box_color_text)

    if draw_mesh:
        image=Image.fromarray(mp_box.draw_landmarks_on_image(face_landmarker_result,image))

    annotated_image,bbox,landmark_points = draw_landmarks68.draw_landmarks_on_image(image,face_landmarker_result,draw_number,font_scale,text_color,
                                                                                    dot_size,dot_color,line_size,line_color,
                                                                                    box_size,box_color)

    
    if json_format=="raw":
        jsons = landmark_points
    else:
        jsons=draw_landmarks68.convert_to_landmark_group_json(landmark_points)
    
    #print(annotation_boxes)
    formatted_json = json.dumps(jsons)
    json_path=create_json_download(formatted_json)
    #return image   
    return annotated_image,jsons,json_path
    

def write_file(file_path,text):
    with open(file_path, 'w', encoding='utf-8') as f:
        f.write(text)

def read_file(file_path):
    """read the text of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content

css="""
#col-left {
    margin: 0 auto;
    max-width: 640px;
}
#col-right {
    margin: 0 auto;
    max-width: 640px;
}
.grid-container {
  display: flex;
  align-items: center;
  justify-content: center;
  gap:10px
}

.image {
  width: 128px; 
  height: 128px; 
  object-fit: cover; 
}

.text {
  font-size: 16px;
}
"""

#css=css,

import hashlib

def text_to_sha256(text):
    text_bytes = text.encode('utf-8')
    hash_object = hashlib.sha256()
    hash_object.update(text_bytes)
    sha256_hex = hash_object.hexdigest()
    return sha256_hex


def create_json_download(text):
    file_id = f"{dir_name}/landmark_{text_to_sha256(text)[:32]}.json"
    write_file(file_id,text)
    # try to save
    return file_id

with gr.Blocks(css=css, elem_id="demo-container") as demo:
    with gr.Column():
        gr.HTML(read_file("demo_header.html"))
        gr.HTML(read_file("demo_tools.html"))
    with gr.Row():
                with gr.Column():
                    image = gr.Image(height=800,sources=['upload','clipboard'],image_mode='RGB',elem_id="image_upload", type="pil", label="Upload")
                    with gr.Row(elem_id="prompt-container",  equal_height=False):
                        with gr.Row():
                            btn = gr.Button("Extract Landmark 68", elem_id="run_button",variant="primary")
                    
                    with gr.Accordion(label="Advanced Settings", open=False):
                        with gr.Row( equal_height=True):
                            draw_number = gr.Checkbox(label="draw Number",value=True)

                            font_scale = gr.Slider(
                            label="Font Scale",
                            minimum=0.1,
                            maximum=2,
                            step=0.1,
                            value=0.5)

                            text_color = gr.ColorPicker(value="rgba(200,200,200,1)",label="text color")
                            #square_shape = gr.Checkbox(label="Square shape")
                        with gr.Row( equal_height=True):
                        
                            line_color = gr.ColorPicker(value="rgba(0,0,255,1)",label="line color")
                            line_size = gr.Slider(
                                label="Line Size",
                                minimum=0,
                                maximum=20,
                                step=1,
                                value=1)
                        with gr.Row( equal_height=True):
                            dot_color = gr.ColorPicker(value="rgba(255,0,0,1)",label="dot color")
                            dot_size = gr.Slider(
                                label="Dot Size",
                                minimum=0,
                                maximum=40,
                                step=1,
                                value=3)
                        with gr.Row( equal_height=True):
                            box_color = gr.ColorPicker(value="rgba(200,200,200,1)",label="box color")
                            box_size = gr.Slider(
                                label="Box Size",
                                minimum=0,
                                maximum=20,
                                step=1,
                                value=1)
                        with gr.Row( equal_height=True):
                            json_format = gr.Radio(choices=["raw","face-detection"],value="face-detection",label="json-output format")
                            draw_mesh = gr.Checkbox(value=True,label="draw mesh",info="draw mediapipe mesh")
                    
                with gr.Column():
                    image_out = gr.Image(label="Output", elem_id="output-img")
                    text_out = gr.TextArea(label="JSON-Output")
                    download_button = gr.DownloadButton(label="Download JSON" )
                    #download_button.click(fn=json_download,inputs=text_out,outputs=download_button)
            

    btn.click(fn=process_images, inputs=[image,draw_number,font_scale,text_color,
                                         dot_size,dot_color,line_size,line_color,
                                         box_size,box_color,json_format,draw_mesh], outputs =[image_out,text_out,download_button], api_name='infer')
    gr.Examples(
                examples =["examples/00003245_00.jpg","examples/00004200.jpg","examples/00005259.jpg","examples/00018022.jpg","examples/img-above.jpg","examples/img-below.jpg","examples/img-side.jpg"],
                inputs=[image]
    )
    gr.HTML(read_file("demo_footer.html"))

    if __name__ == "__main__":
        demo.launch()