|
import mediapipe as mp |
|
from mediapipe.tasks import python |
|
from mediapipe.tasks.python import vision |
|
from mediapipe.framework.formats import landmark_pb2 |
|
from mediapipe import solutions |
|
import numpy as np |
|
|
|
|
|
def xywh_to_xyxy(box): |
|
return [box[0],box[1],box[0]+box[2],box[1]+box[3]] |
|
|
|
def convert_to_box(face_landmarks_list,indices,w=1024,h=1024): |
|
x1=w |
|
y1=h |
|
x2=0 |
|
y2=0 |
|
for index in indices: |
|
x=min(w,max(0,(face_landmarks_list[0][index].x*w))) |
|
y=min(h,max(0,(face_landmarks_list[0][index].y*h))) |
|
if x<x1: |
|
x1=x |
|
|
|
if y<y1: |
|
y1=y |
|
|
|
if x>x2: |
|
x2=x |
|
if y>y2: |
|
y2=y |
|
|
|
|
|
return [int(x1),int(y1),int(x2-x1),int(y2-y1)] |
|
|
|
|
|
def box_to_square(bbox): |
|
box=list(bbox) |
|
if box[2]>box[3]: |
|
diff = box[2]-box[3] |
|
box[3]+=diff |
|
box[1]-=diff/2 |
|
elif box[3]>box[2]: |
|
diff = box[3]-box[2] |
|
box[2]+=diff |
|
box[0]-=diff/2 |
|
return box |
|
|
|
|
|
def face_landmark_result_to_box(face_landmarker_result,width=1024,height=1024): |
|
face_landmarks_list = face_landmarker_result.face_landmarks |
|
|
|
|
|
full_indices = list(range(456)) |
|
|
|
MIDDLE_FOREHEAD = 151 |
|
BOTTOM_CHIN_EX = 152 |
|
BOTTOM_CHIN = 175 |
|
CHIN_TO_MIDDLE_FOREHEAD = [200,14,1,6,18,9] |
|
MOUTH_BOTTOM = [202,200,422] |
|
EYEBROW_CHEEK_LEFT_RIGHT = [46,226,50,1,280,446,276] |
|
|
|
LEFT_HEAD_OUTER_EX = 251 |
|
LEFT_HEAD_OUTER = 301 |
|
LEFT_EYE_OUTER_EX = 356 |
|
LEFT_EYE_OUTER = 264 |
|
LEFT_MOUTH_OUTER_EX = 288 |
|
LEFT_MOUTH_OUTER = 288 |
|
LEFT_CHIN_OUTER = 435 |
|
RIGHT_HEAD_OUTER_EX = 21 |
|
RIGHT_HEAD_OUTER = 71 |
|
RIGHT_EYE_OUTER_EX = 127 |
|
RIGHT_EYE_OUTER = 34 |
|
RIGHT_MOUTH_OUTER_EX = 58 |
|
RIGHT_MOUTH_OUTER = 215 |
|
RIGHT_CHIN_OUTER = 150 |
|
|
|
|
|
min_indices=CHIN_TO_MIDDLE_FOREHEAD+EYEBROW_CHEEK_LEFT_RIGHT+MOUTH_BOTTOM |
|
|
|
chin_to_brow_indices = [LEFT_CHIN_OUTER,LEFT_MOUTH_OUTER,LEFT_EYE_OUTER,LEFT_HEAD_OUTER,MIDDLE_FOREHEAD,RIGHT_HEAD_OUTER,RIGHT_EYE_OUTER,RIGHT_MOUTH_OUTER,RIGHT_CHIN_OUTER,BOTTOM_CHIN]+min_indices |
|
|
|
box1 = convert_to_box(face_landmarks_list,min_indices,width,height) |
|
box2 = convert_to_box(face_landmarks_list,chin_to_brow_indices,width,height) |
|
box3 = convert_to_box(face_landmarks_list,full_indices,width,height) |
|
|
|
|
|
return [box1,box2,box3,box_to_square(box1),box_to_square(box2),box_to_square(box3)] |
|
|
|
|
|
def draw_landmarks_on_image(detection_result,rgb_image): |
|
face_landmarks_list = detection_result.face_landmarks |
|
annotated_image = np.copy(rgb_image) |
|
|
|
|
|
for idx in range(len(face_landmarks_list)): |
|
face_landmarks = face_landmarks_list[idx] |
|
|
|
|
|
face_landmarks_proto = landmark_pb2.NormalizedLandmarkList() |
|
face_landmarks_proto.landmark.extend([ |
|
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in face_landmarks |
|
]) |
|
|
|
solutions.drawing_utils.draw_landmarks( |
|
image=annotated_image, |
|
landmark_list=face_landmarks_proto, |
|
connections=mp.solutions.face_mesh.FACEMESH_TESSELATION, |
|
landmark_drawing_spec=None, |
|
connection_drawing_spec=mp.solutions.drawing_styles |
|
.get_default_face_mesh_tesselation_style()) |
|
|
|
return annotated_image |
|
|
|
def mediapipe_to_box(image_data,model_path="face_landmarker.task"): |
|
BaseOptions = mp.tasks.BaseOptions |
|
FaceLandmarker = mp.tasks.vision.FaceLandmarker |
|
FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions |
|
VisionRunningMode = mp.tasks.vision.RunningMode |
|
|
|
options = FaceLandmarkerOptions( |
|
base_options=BaseOptions(model_asset_path=model_path), |
|
running_mode=VisionRunningMode.IMAGE |
|
,min_face_detection_confidence=0, min_face_presence_confidence=0 |
|
) |
|
|
|
|
|
with FaceLandmarker.create_from_options(options) as landmarker: |
|
if isinstance(image_data,str): |
|
mp_image = mp.Image.create_from_file(image_data) |
|
else: |
|
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=np.asarray(image_data)) |
|
face_landmarker_result = landmarker.detect(mp_image) |
|
boxes = face_landmark_result_to_box(face_landmarker_result,mp_image.width,mp_image.height) |
|
return boxes,mp_image,face_landmarker_result |