import mediapipe as mp from mediapipe.tasks import python from mediapipe.tasks.python import vision from mediapipe.framework.formats import landmark_pb2 from mediapipe import solutions import numpy as np # for X,Y,W,H to x1,y1,x2,y2(Left-top,right-bottom style) def xywh_to_xyxy(box): return [box[0],box[1],box[0]+box[2],box[1]+box[3]] def convert_to_box(face_landmarks_list,indices,w=1024,h=1024): x1=w y1=h x2=0 y2=0 for index in indices: x=min(w,max(0,(face_landmarks_list[0][index].x*w))) y=min(h,max(0,(face_landmarks_list[0][index].y*h))) if xx2: x2=x if y>y2: y2=y return [int(x1),int(y1),int(x2-x1),int(y2-y1)] def box_to_square(bbox): box=list(bbox) if box[2]>box[3]: diff = box[2]-box[3] box[3]+=diff box[1]-=diff/2 elif box[3]>box[2]: diff = box[3]-box[2] box[2]+=diff box[0]-=diff/2 return box def face_landmark_result_to_box(face_landmarker_result,width=1024,height=1024): face_landmarks_list = face_landmarker_result.face_landmarks full_indices = list(range(456)) MIDDLE_FOREHEAD = 151 BOTTOM_CHIN_EX = 152 BOTTOM_CHIN = 175 CHIN_TO_MIDDLE_FOREHEAD = [200,14,1,6,18,9] MOUTH_BOTTOM = [202,200,422] EYEBROW_CHEEK_LEFT_RIGHT = [46,226,50,1,280,446,276] LEFT_HEAD_OUTER_EX = 251 #on side face almost same as full LEFT_HEAD_OUTER = 301 LEFT_EYE_OUTER_EX = 356 LEFT_EYE_OUTER = 264 LEFT_MOUTH_OUTER_EX = 288 LEFT_MOUTH_OUTER = 288 LEFT_CHIN_OUTER = 435 RIGHT_HEAD_OUTER_EX = 21 RIGHT_HEAD_OUTER = 71 RIGHT_EYE_OUTER_EX = 127 RIGHT_EYE_OUTER = 34 RIGHT_MOUTH_OUTER_EX = 58 RIGHT_MOUTH_OUTER = 215 RIGHT_CHIN_OUTER = 150 # TODO naming line min_indices=CHIN_TO_MIDDLE_FOREHEAD+EYEBROW_CHEEK_LEFT_RIGHT+MOUTH_BOTTOM chin_to_brow_indices = [LEFT_CHIN_OUTER,LEFT_MOUTH_OUTER,LEFT_EYE_OUTER,LEFT_HEAD_OUTER,MIDDLE_FOREHEAD,RIGHT_HEAD_OUTER,RIGHT_EYE_OUTER,RIGHT_MOUTH_OUTER,RIGHT_CHIN_OUTER,BOTTOM_CHIN]+min_indices box1 = convert_to_box(face_landmarks_list,min_indices,width,height) box2 = convert_to_box(face_landmarks_list,chin_to_brow_indices,width,height) box3 = convert_to_box(face_landmarks_list,full_indices,width,height) #print(box) return [box1,box2,box3,box_to_square(box1),box_to_square(box2),box_to_square(box3)] def draw_landmarks_on_image(detection_result,rgb_image): face_landmarks_list = detection_result.face_landmarks annotated_image = np.copy(rgb_image) # Loop through the detected faces to visualize. for idx in range(len(face_landmarks_list)): face_landmarks = face_landmarks_list[idx] # Draw the face landmarks. face_landmarks_proto = landmark_pb2.NormalizedLandmarkList() face_landmarks_proto.landmark.extend([ landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in face_landmarks ]) solutions.drawing_utils.draw_landmarks( image=annotated_image, landmark_list=face_landmarks_proto, connections=mp.solutions.face_mesh.FACEMESH_TESSELATION, landmark_drawing_spec=None, connection_drawing_spec=mp.solutions.drawing_styles .get_default_face_mesh_tesselation_style()) return annotated_image def mediapipe_to_box(image_data,model_path="face_landmarker.task"): BaseOptions = mp.tasks.BaseOptions FaceLandmarker = mp.tasks.vision.FaceLandmarker FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions VisionRunningMode = mp.tasks.vision.RunningMode options = FaceLandmarkerOptions( base_options=BaseOptions(model_asset_path=model_path), running_mode=VisionRunningMode.IMAGE ,min_face_detection_confidence=0, min_face_presence_confidence=0 ) with FaceLandmarker.create_from_options(options) as landmarker: if isinstance(image_data,str): mp_image = mp.Image.create_from_file(image_data) else: mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=np.asarray(image_data)) face_landmarker_result = landmarker.detect(mp_image) boxes = face_landmark_result_to_box(face_landmarker_result,mp_image.width,mp_image.height) return boxes,mp_image,face_landmarker_result