File size: 4,225 Bytes
a4b5d57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
from mediapipe.framework.formats import landmark_pb2
from mediapipe import solutions
import numpy as np

# for X,Y,W,H to x1,y1,x2,y2(Left-top,right-bottom style)
def xywh_to_xyxy(box):
  return [box[0],box[1],box[0]+box[2],box[1]+box[3]]

def convert_to_box(face_landmarks_list,indices,w=1024,h=1024):
  x1=w
  y1=h
  x2=0
  y2=0
  for index in indices:
    x=min(w,max(0,(face_landmarks_list[0][index].x*w)))
    y=min(h,max(0,(face_landmarks_list[0][index].y*h)))
    if x<x1:
      x1=x

    if y<y1:
      y1=y
    
    if x>x2:
      x2=x
    if y>y2:
      y2=y
   
        
  return [int(x1),int(y1),int(x2-x1),int(y2-y1)]
       
  
def box_to_square(bbox):
  box=list(bbox)
  if box[2]>box[3]:
    diff = box[2]-box[3]
    box[3]+=diff
    box[1]-=diff/2
  elif box[3]>box[2]:
    diff = box[3]-box[2]
    box[2]+=diff
    box[0]-=diff/2
  return box


def face_landmark_result_to_box(face_landmarker_result,width=1024,height=1024):
  face_landmarks_list = face_landmarker_result.face_landmarks


  full_indices  = list(range(456))

  MIDDLE_FOREHEAD = 151
  BOTTOM_CHIN_EX = 152
  BOTTOM_CHIN = 175
  CHIN_TO_MIDDLE_FOREHEAD = [200,14,1,6,18,9]
  MOUTH_BOTTOM = [202,200,422]
  EYEBROW_CHEEK_LEFT_RIGHT = [46,226,50,1,280,446,276]

  LEFT_HEAD_OUTER_EX = 251  #on side face almost same as full
  LEFT_HEAD_OUTER = 301
  LEFT_EYE_OUTER_EX = 356
  LEFT_EYE_OUTER = 264
  LEFT_MOUTH_OUTER_EX = 288
  LEFT_MOUTH_OUTER = 288
  LEFT_CHIN_OUTER = 435
  RIGHT_HEAD_OUTER_EX = 21
  RIGHT_HEAD_OUTER = 71
  RIGHT_EYE_OUTER_EX = 127
  RIGHT_EYE_OUTER = 34
  RIGHT_MOUTH_OUTER_EX = 58
  RIGHT_MOUTH_OUTER = 215
  RIGHT_CHIN_OUTER = 150

  # TODO naming line
  min_indices=CHIN_TO_MIDDLE_FOREHEAD+EYEBROW_CHEEK_LEFT_RIGHT+MOUTH_BOTTOM

  chin_to_brow_indices = [LEFT_CHIN_OUTER,LEFT_MOUTH_OUTER,LEFT_EYE_OUTER,LEFT_HEAD_OUTER,MIDDLE_FOREHEAD,RIGHT_HEAD_OUTER,RIGHT_EYE_OUTER,RIGHT_MOUTH_OUTER,RIGHT_CHIN_OUTER,BOTTOM_CHIN]+min_indices
  
  box1 = convert_to_box(face_landmarks_list,min_indices,width,height)
  box2 = convert_to_box(face_landmarks_list,chin_to_brow_indices,width,height)
  box3 = convert_to_box(face_landmarks_list,full_indices,width,height)
  #print(box)

  return [box1,box2,box3,box_to_square(box1),box_to_square(box2),box_to_square(box3)]


def draw_landmarks_on_image(detection_result,rgb_image):
  face_landmarks_list = detection_result.face_landmarks
  annotated_image = np.copy(rgb_image)

  # Loop through the detected faces to visualize.
  for idx in range(len(face_landmarks_list)):
    face_landmarks = face_landmarks_list[idx]

    # Draw the face landmarks.
    face_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
    face_landmarks_proto.landmark.extend([
      landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in face_landmarks
    ])

    solutions.drawing_utils.draw_landmarks(
        image=annotated_image,
        landmark_list=face_landmarks_proto,
        connections=mp.solutions.face_mesh.FACEMESH_TESSELATION,
        landmark_drawing_spec=None,
        connection_drawing_spec=mp.solutions.drawing_styles
        .get_default_face_mesh_tesselation_style())
    
  return annotated_image

def mediapipe_to_box(image_data,model_path="face_landmarker.task"):
  BaseOptions = mp.tasks.BaseOptions
  FaceLandmarker = mp.tasks.vision.FaceLandmarker
  FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions
  VisionRunningMode = mp.tasks.vision.RunningMode

  options = FaceLandmarkerOptions(
      base_options=BaseOptions(model_asset_path=model_path),
      running_mode=VisionRunningMode.IMAGE
      ,min_face_detection_confidence=0, min_face_presence_confidence=0
      )


  with FaceLandmarker.create_from_options(options) as landmarker:
    if isinstance(image_data,str):
        mp_image = mp.Image.create_from_file(image_data)
    else:
        mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=np.asarray(image_data))
    face_landmarker_result = landmarker.detect(mp_image)
    boxes = face_landmark_result_to_box(face_landmarker_result,mp_image.width,mp_image.height)
    return boxes,mp_image,face_landmarker_result