AlanFeder's picture
Rename b1_all_rag_fns.py to all_rag_fns.py
ff11823 verified
import io
import json
import numpy as np
import requests
def import_talk_info() -> list[dict]:
"""
Import talk info from file.
Returns:
list[dict]: A list of talk info.
"""
target_file_url = "https://raw.githubusercontent.com/AlanFeder/rgov-2024/main/data/rgov_talks.json"
response = requests.get(target_file_url)
response.raise_for_status() # Ensure we notice if the download fails
return response.json()
def import_embeds() -> np.ndarray:
"""
Import embeddings from file.
Returns:
np.ndarray: The embeddings.
"""
target_file_url = (
"https://raw.githubusercontent.com/AlanFeder/rgov-2024/main/data/embeds.csv"
)
response = requests.get(target_file_url)
response.raise_for_status()
# Use numpy.genfromtxt to read the CSV data from the response text
data = np.genfromtxt(
io.StringIO(response.text), delimiter=","
) # skip header if needed
return data
def import_data() -> tuple[list[dict], np.ndarray]:
# """
# Import data from files.
# Returns:
# tuple[list[dict], dict]: A tuple containing the talk info and embeddings.
# """
talk_info = import_talk_info()
embeds = import_embeds()
return talk_info, embeds
def do_1_embed(lt: str, oai_api_key: str) -> np.ndarray:
"""
Generate embeddings using the OpenAI API for a single text.
Args:
lt (str): A text to generate embeddings for.
emb_client (OpenAI): The embedding API client (OpenAI).
Returns:
np.ndarray: The generated embeddings.
"""
# OpenAI API endpoint for embeddings
url = "https://api.openai.com/v1/embeddings"
# Headers for the API request
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {oai_api_key}",
}
# Request payload
payload = {"input": lt, "model": "text-embedding-3-small"}
# Make the API request
response = requests.post(url, headers=headers, data=json.dumps(payload))
# Check if the request was successful
if response.status_code == 200:
# Parse the JSON response
embed_response = response.json()
# Extract the embedding
here_embed = np.array(embed_response["data"][0]["embedding"])
return here_embed
else:
print(f"Error: {response.status_code}")
print(response.text)
def do_sort(
embed_q: np.ndarray, embed_talks: np.ndarray, list_talk_ids: list[str]
) -> list[dict[str, str | float]]:
"""
Sort documents based on their cosine similarity to the query embedding.
Args:
embed_dict (dict[str, np.ndarray]): Dictionary containing document embeddings.
arr_q (np.ndarray): Query embedding.
Returns:
pd.DataFrame: Sorted dataframe containing document IDs and similarity scores.
"""
# Calculate cosine similarities between query embedding and document embeddings
cos_sims = np.dot(embed_talks, embed_q)
# Get the indices of the best matching video IDs
best_match_video_ids = np.argsort(-cos_sims)
# Get the sorted video IDs based on the best match indices
sorted_vids = [
{"id0": list_talk_ids[i], "score": -cs}
for i, cs in zip(best_match_video_ids, np.sort(-cos_sims))
]
return sorted_vids
def limit_docs(
sorted_vids: list[dict],
talk_info: dict,
n_results: int,
) -> list[dict]:
"""
Limit the retrieved documents based on a score threshold and return the top documents.
Args:
df_sorted (pd.DataFrame): Sorted dataframe containing document IDs and similarity scores.
df_talks (pd.DataFrame): Dataframe containing talk information.
n_results (int): Number of top documents to retrieve.
transcript_dicts (dict[str, dict]): Dictionary containing transcript text for each document ID.
Returns:
dict[str, dict]: Dictionary containing the top documents with their IDs, scores, and text.
"""
# Get the top n_results documents
top_vids = sorted_vids[:n_results]
# Get the top score and calculate the score threshold
top_score = top_vids[0]["score"]
score_thresh = max(min(0.6, top_score - 0.2), 0.2)
# Filter the top documents based on the score threshold
keep_texts = []
for my_vid in top_vids:
if my_vid["score"] >= score_thresh:
vid_data = talk_info[my_vid["id0"]]
vid_data = {**vid_data, **my_vid}
keep_texts.append(vid_data)
return keep_texts
def do_retrieval(
query0: str,
n_results: int,
oai_api_key: str,
embeds: np.ndarray,
talk_info: dict[str, str | int],
) -> list[dict]:
"""
Retrieve relevant documents based on the user's query.
Args:
query0 (str): The user's query.
n_results (int): The number of documents to retrieve.
api_client (OpenAI): The API client (OpenAI) for generating embeddings.
Returns:
dict[str, dict]: The retrieved documents.
"""
try:
# Generate embeddings for the query
arr_q = do_1_embed(query0, oai_api_key=oai_api_key)
# reformat to be like old version
talk_ids = [ti["id0"] for ti in talk_info]
talk_info = {ti["id0"]: ti for ti in talk_info}
# Sort documents based on their cosine similarity to the query embedding
sorted_vids = do_sort(embed_q=arr_q, embed_talks=embeds, list_talk_ids=talk_ids)
# Limit the retrieved documents based on a score threshold
keep_texts = limit_docs(
sorted_vids=sorted_vids, talk_info=talk_info, n_results=n_results
)
return keep_texts
except Exception as e:
raise e
SYSTEM_PROMPT = """
You are an AI assistant that helps answer questions by searching through video transcripts.
I have retrieved the transcripts most likely to answer the user's question.
Carefully read through the transcripts to find information that helps answer the question.
Be brief - your response should not be more than two paragraphs.
Only use information directly stated in the provided transcripts to answer the question.
Do not add any information or make any claims that are not explicitly supported by the transcripts.
If the transcripts do not contain enough information to answer the question, state that you do not have enough information to provide a complete answer.
Format the response clearly. If only one of the transcripts answers the question, don't reference the other and don't explain why its content is irrelevant.
Do not speak in the first person. DO NOT write a letter, make an introduction, or salutation.
Reference the speaker's name when you say what they said.
"""
def set_messages(system_prompt: str, user_prompt: str) -> list[dict[str, str]]:
"""
Set the messages for the chat completion.
Args:
system_prompt (str): The system prompt.
user_prompt (str): The user prompt.
Returns:
tuple[list[dict[str, str]], int]: A tuple containing the messages and the total number of input tokens.
"""
messages1 = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
]
return messages1
def make_user_prompt(question: str, keep_texts: list[dict]) -> str:
"""
Create the user prompt based on the question and the retrieved transcripts.
Args:
question (str): The user's question.
keep_texts (dict[str, dict[str, str]]): The retrieved transcripts.
Returns:
str: The user prompt.
"""
user_prompt = f"""
Question: {question}
==============================
"""
if len(keep_texts) > 0:
list_strs = []
for i, tx_val in enumerate(keep_texts):
text0 = tx_val["transcript"]
speaker_name = tx_val["Speaker"]
list_strs.append(
f"Video Transcript {i+1}\nSpeaker: {speaker_name}\n{text0}"
)
user_prompt += "\n-------\n".join(list_strs)
user_prompt += """
==============================
After analyzing the above video transcripts, please provide a helpful answer to my question. Remember to stay within two paragraphs
Address the response to me directly. Do not use any information not explicitly supported by the transcripts. Remember to reference the speaker's name."""
else:
# If no relevant transcripts are found, generate a default response
user_prompt += "No relevant video transcripts were found. Please just return a result that says something like 'I'm sorry, but the answer to {Question} was not found in the transcripts from the R/Gov Conference'"
# logger.info(f'User prompt: {user_prompt}')
return user_prompt
def parse_1_query_stream(response):
# Check if the request was successful
if response.status_code == 200:
for line in response.iter_lines():
if line:
line = line.decode("utf-8")
if line.startswith("data: "):
data = line[6:] # Remove 'data: ' prefix
if data != "[DONE]":
try:
chunk = json.loads(data)
content = chunk["choices"][0]["delta"].get("content", "")
if content:
yield content
except json.JSONDecodeError:
yield f"Error decoding JSON: {data}"
else:
yield f"Error: {response.status_code}\n{response.text}"
def parse_1_query_no_stream(response):
if response.status_code == 200:
try:
response1 = response.json()
completion = response1["choices"][0]["message"]["content"]
return completion
except json.JSONDecodeError:
return f"Error decoding JSON: {response.text}"
else:
return f"Error: {response.status_code}\n{response.text}"
def do_1_query(
messages1: list[dict[str, str]], oai_api_key: str, stream: bool, model_name: str
):
"""
Generate a response using the specified chat completion model.
Args:
messages1 (list[dict[str, str]]): The messages for the chat completion.
gen_client (OpenAI): The generation client (OpenAI).
"""
# OpenAI API endpoint for chat completions
url = "https://api.openai.com/v1/chat/completions"
# Your OpenAI API key
# Headers for the API request
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {oai_api_key}",
}
if stream:
headers["Accept"] = "text/event-stream" # Required for streaming
# Model to use
model1 = model_name
# Request payload
payload = {
"model": model1,
"messages": messages1,
"seed": 18,
"temperature": 0,
"stream": stream,
}
# Make the API request
response = requests.post(
url, headers=headers, data=json.dumps(payload), stream=stream
)
if stream:
response1 = parse_1_query_stream(response)
else:
# Check if the request was successful
response1 = parse_1_query_no_stream(response)
return response1
def do_generation(
query1: str, keep_texts: list[dict], oai_api_key: str, stream: bool, model_name: str
):
"""
Generate the chatbot response using the specified generation client.
Args:
query1 (str): The user's query.
keep_texts (dict[str, dict[str, str]]): The retrieved relevant texts.
gen_client (OpenAI): The generation client (OpenAI).
Returns:
tuple[Stream, int]: A tuple containing the generated response stream and the number of prompt tokens.
"""
user_prompt = make_user_prompt(query1, keep_texts=keep_texts)
messages1 = set_messages(SYSTEM_PROMPT, user_prompt)
response = do_1_query(
messages1, oai_api_key=oai_api_key, stream=stream, model_name=model_name
)
return response
def calc_cost(
prompt_tokens: int, completion_tokens: int, embedding_tokens: int
) -> float:
"""
Calculate the cost in cents based on the number of prompt, completion, and embedding tokens.
Args:
prompt_tokens (int): The number of tokens in the prompt.
completion_tokens (int): The number of tokens in the completion.
embedding_tokens (int): The number of tokens in the embedding.
Returns:
float: The cost in cents.
"""
prompt_cost = prompt_tokens / 2000
completion_cost = 3 * completion_tokens / 2000
embedding_cost = embedding_tokens / 500000
cost_cents = prompt_cost + completion_cost + embedding_cost
return cost_cents
def do_rag(
user_input: str,
oai_api_key: str,
model_name: str,
stream: bool = False,
n_results: int = 3,
):
# Load the data
talk_info, embeds = import_data()
# Load the model
retrieved_docs = do_retrieval(
query0=user_input,
n_results=n_results,
oai_api_key=oai_api_key,
embeds=embeds,
talk_info=talk_info,
)
response = do_generation(
query1=user_input,
keep_texts=retrieved_docs,
model_name=model_name,
oai_api_key=oai_api_key,
stream=stream,
)
return response, retrieved_docs