File size: 2,387 Bytes
b569a7b
b1869b3
 
 
 
 
 
b569a7b
b1869b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b569a7b
b1869b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import gradio as gr
import yolov7
from yolov7.models.common import autoShape
from yolov7.models.experimental import attempt_load
from yolov7.utils.google_utils import attempt_download_from_hub, attempt_download
from yolov7.utils.torch_utils import TracedModel
YOLO_MODEL_FILE_NAME="kadirnar/yolov7-v0.1"

def load_local_model(model_file, autoshape=True, device='cpu', trace=False, size=640, half=False, hf_model=False):
    """
    Creates a specified YOLOv7 model
    Arguments:
        model_path (str): path of the model
        device (str): select device that model will be loaded (cpu, cuda)
        trace (bool): if True, model will be traced
        size (int): size of the input image
        half (bool): if True, model will be in half precision
        hf_model (bool): if True, model will be loaded from huggingface hub    
    Returns:
        pytorch model
    (Adapted from yolov7.hubconf.create)
    """
    
    model = attempt_load(model_file, map_location=device)
    if trace:
        model = TracedModel(model, device, size)
    if autoshape:
        model = autoShape(model)
    if half:
        model.half()
    return model

# YOLO_MODEL_FILE_NAME="kadirnar/yolov7-tiny-v0.1"
def yolov7_inference(
    image: gr.inputs.Image = None,
    image_size: gr.inputs.Slider = 640,
    conf_threshold: gr.inputs.Slider = 0.25,
    iou_threshold: gr.inputs.Slider = 0.45,        
):
    model = yolov7.load_model(YOLO_MODEL_FILE_NAME, device="cpu", hf_model=False, trace=False)
    model.conf = conf_threshold
    model.iou = iou_threshold
    results = model([image], size=image_size)
    return results.render()[0]

inputs = [
    gr.inputs.Image(type="pil", label="Input Image"),

    gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
    gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
    gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]

outputs = gr.outputs.Image(type="filepath", label="Output Image")
title = "Yolov7: evaluation yolov7.pt"

examples = [['car.jpeg', 640, 0.5, 0.75], 
            ['horse.jpeg', 640, 0.5, 0.75]]
demo_app = gr.Interface(
    fn=yolov7_inference,
    inputs=inputs,
    outputs=outputs,
    title=title,
    examples=examples,
    cache_examples=True,
)
demo_app.launch(debug=True, enable_queue=True)