import gradio as gr from langchain_community.llms import HuggingFaceEndpoint from langchain_community.document_loaders import WebBaseLoader, PyPDFLoader from langchain_community.vectorstores import Chroma from langchain_community import embeddings from langchain_community.chat_models import ChatOllama from langchain_core.runnables import RunnablePassthrough from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain.output_parsers import PydanticOutputParser from langchain.text_splitter import CharacterTextSplitter import os def process_input(urls, question): # get a token: https://huggingface.co/docs/api-inference/quicktour#get-your-api-token from getpass import getpass HUGGINGFACEHUB_API_TOKEN = getpass() os.environ['HUGGINGFACEHUB_API_TOKEN'] = 'HUGGINGFACEHUB_API_TOKEN' repo_id = "mistralai/Mistral-7B-Instruct-v0.2" model_local = HuggingFaceEndpoint(repo_id=repo_id, max_length=128, temperature=0.5, token=HUGGINGFACEHUB_API_TOKEN ) # Convert string of URLs to list urls_list = urls.split("\n") docs = [WebBaseLoader(url).load() for url in urls_list] docs_list = [item for sublist in docs for item in sublist] text_splitter = CharacterTextSplitter.from_tiktoken_encoder(chunk_size=7500, chunk_overlap=100) doc_splits = text_splitter.split_documents(docs_list) vectorstore = Chroma.from_documents( documents=doc_splits, collection_name="rag-chroma", embedding=embeddings.ollama.OllamaEmbeddings(model='nomic-embed-text'), ) retriever = vectorstore.as_retriever() after_rag_template = """Answer the question based only on the following context: {context} Question: {question} """ after_rag_prompt = ChatPromptTemplate.from_template(after_rag_template) after_rag_chain = ( {"context": retriever, "question": RunnablePassthrough()} | after_rag_prompt | model_local | StrOutputParser() ) return after_rag_chain.invoke(question) # Define Gradio interface iface = gr.Interface(fn=process_input, inputs=[gr.Textbox(label="Enter URLs separated by new lines"), gr.Textbox(label="Question")], # server_name outputs="text", title="Document Query with Ollama", description="Enter URLs and a question to query the documents.") iface.launch()