Spaces:
Running
on
Zero
Running
on
Zero
AlekseyCalvin
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -23,10 +23,10 @@ import warnings
|
|
23 |
import safetensors.torch
|
24 |
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
|
31 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
|
@@ -46,23 +46,25 @@ dtype = torch.bfloat16
|
|
46 |
pipe = FluxWithCFGPipeline.from_pretrained("ostris/OpenFLUX.1", torch_dtype=dtype).to("cuda")
|
47 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda")
|
48 |
#pipe.num_single_layers="0"
|
49 |
-
pipe.transformer_chunk_size="0"
|
50 |
#model.pooled_projections="(_, 1)[0]"
|
51 |
-
pipe.transformer_pooled_projections_dim="(batch_size, 0)"
|
52 |
|
53 |
pipe.to("cuda")
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
66 |
torch.cuda.empty_cache()
|
67 |
|
68 |
MAX_SEED = 2**32-1
|
|
|
23 |
import safetensors.torch
|
24 |
|
25 |
|
26 |
+
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
27 |
+
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
28 |
+
os.environ["HF_HUB_CACHE"] = cache_path
|
29 |
+
os.environ["HF_HOME"] = cache_path
|
30 |
|
31 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
|
|
|
46 |
pipe = FluxWithCFGPipeline.from_pretrained("ostris/OpenFLUX.1", torch_dtype=dtype).to("cuda")
|
47 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda")
|
48 |
#pipe.num_single_layers="0"
|
49 |
+
#pipe.transformer_chunk_size="0"
|
50 |
#model.pooled_projections="(_, 1)[0]"
|
51 |
+
#pipe.transformer_pooled_projections_dim="(batch_size, 0)"
|
52 |
|
53 |
pipe.to("cuda")
|
54 |
+
clipmodel = 'norm'
|
55 |
+
if clipmodel == "long":
|
56 |
+
model_id = "zer0int/LongCLIP-GmP-ViT-L-14"
|
57 |
+
config = CLIPConfig.from_pretrained(model_id)
|
58 |
+
maxtokens = 77
|
59 |
+
if clipmodel == "norm":
|
60 |
+
model_id = "zer0int/CLIP-GmP-ViT-L-14"
|
61 |
+
config = CLIPConfig.from_pretrained(model_id)
|
62 |
+
maxtokens = 77
|
63 |
+
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda")
|
64 |
+
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True)
|
65 |
+
pipe.tokenizer = clip_processor.tokenizer
|
66 |
+
pipe.text_encoder = clip_model.text_model
|
67 |
+
pipe.text_encoder.dtype = torch.bfloat16
|
68 |
torch.cuda.empty_cache()
|
69 |
|
70 |
MAX_SEED = 2**32-1
|