File size: 9,324 Bytes
72935b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import time
import sys
import streamlit as st
import string
import os
from io import StringIO 
import pdb
import json
import torch
import requests
import socket
from streamlit_image_select import image_select





use_case = {"1":"Image background removal","2":"Masking foreground for downstream inpainting task"}
mask_types = {"blur - blurs background":"blur","map - makes the foreground white and rest black ":"map","rgba - makes background white":"rgba","green - makes the background green":"green"}




APP_NAME = "hf/salient_object_detection"
INFO_URL = "https://www.taskswithcode.com/stats/"
TMP_DIR="tmp_dir"
TMP_SEED = 1



        

def get_views(action):
    ret_val = 0
    #return "{:,}".format(ret_val)
    hostname = socket.gethostname()
    ip_address = socket.gethostbyname(hostname)
    if ("view_count" not in st.session_state):
        try:
           app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
           res = requests.post(INFO_URL, json = app_info).json()
           print(res)
           data = res["count"]
        except:
           data = 0
        ret_val = data
        st.session_state["view_count"] = data
    else:
        ret_val = st.session_state["view_count"]
        if (action != "init"):
           app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
           res = requests.post(INFO_URL, json = app_info).json()
    return "{:,}".format(ret_val)
        



def construct_model_info_for_display(model_names):
    options_arr  = []
    #markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b><br/></div>"
    markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Model evaluated </b><br/></div>"
    markdown_str += f"<div style=\"font-size:2px; color: #2f2f2f; text-align: left\"><br/></div>"
    for node in model_names:
        options_arr .append(node["name"])
        if (node["mark"] == "True"):
            markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: left\">&nbsp;•&nbsp;Model:&nbsp;<a href=\'{node['paper_url']}\' target='_blank'>{node['name']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Code released by:&nbsp;<a href=\'{node['orig_author_url']}\' target='_blank'>{node['orig_author']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Model info:&nbsp;<a href=\'{node['sota_info']['sota_link']}\' target='_blank'>{node['sota_info']['task']}</a></div>"
            if ("Note" in node):
                markdown_str += f"<div style=\"font-size:16px; color: #a91212; text-align: left\">&nbsp;&nbsp;&nbsp;&nbsp;{node['Note']}<a href=\'{node['alt_url']}\' target='_blank'>link</a></div>"
            markdown_str += "<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"><br/></div>"
        
    markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><b>Note:</b><br/>•&nbsp;Uploaded files are loaded into non-persistent memory for the duration of the computation. They are not cached</div>"
    markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><br/><a href=\'https://github.com/taskswithcode/salient_object_detection_app.git\' target='_blank'>Github code</a> for this app</div>"
    return options_arr,markdown_str


def init_page():
    st.set_page_config(page_title='TWC - State-of-the-art model salient object detection (visually dominant objects in an image)', page_icon="logo.jpg", layout='centered', initial_sidebar_state='auto',
            menu_items={
             'About': 'This app was created by taskswithcode. http://taskswithcode.com'
             
              })
    col,pad = st.columns([85,15])

    with col:
        st.image("long_form_logo_with_icon.png")


def run_test(config,input_file_name,display_area,uploaded_file,mask_type):
    global TMP_SEED
    display_area.text("Processing request...")
    try:
        if (uploaded_file is None):
            file_data = open(input_file_name, "rb")
            r = requests.post(config["SERVER_ADDRESS"], data={"mask":mask_type}, files={"test":file_data})
        else:
            file_data = uploaded_file.read()
            file_name = f"{TMP_DIR}/{TMP_SEED}_{str(time.time()).replace('.','_')}_{uploaded_file.name}"
            TMP_SEED += 1
            with open(file_name,"wb") as fp:
                fp.write(file_data)
            file_data = open(file_name, "rb")
            r = requests.post(config["SERVER_ADDRESS"], data={"mask":mask_type}, files={"test":file_data})
            os.remove(file_name)
        print("Servers response:",r.status_code,len(r.content))
        if (r.status_code == 200):
            size = "{:,}".format(len(r.content))
            return {"response":r.content,"size":size}
        else:
            return {"error":f"API request failed {r.status_code}"}
    except Exception as e:
        st.error("Some error occurred during prediction" + str(e))
        st.stop()
        return {"error":f"Exception in performing salient object detection: {str(e)}"}
    return {} 


    

def display_results(results,response_info,mask):
    main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
    body_sent = []
    download_data = {}
    main_sent = main_sent + "\n" + '\n'.join(body_sent)
    st.markdown(main_sent,unsafe_allow_html=True)
    st.image(results["response"], caption=f'Output of salient object detection with mask: {mask}')
    st.session_state["download_ready"]  = results["response"]
    get_views("submit")


def init_session():
    print("Init session")
    init_page()
    st.session_state["model_name"] = "insprynet"
    st.session_state["download_ready"] = None    
    st.session_state["model_name"] = "ss_test"
    st.session_state["file_name"] = "default"
    st.session_state["mask_type"] = "blur"
 
def app_main(app_mode,example_files,model_name_files,config_file):
  init_session()
  with open(example_files) as fp:
        example_file_names = json.load(fp) 
  with open(model_name_files) as fp:
        model_names = json.load(fp)
  with open(config_file) as fp:
        config = json.load(fp)
  curr_use_case = use_case[app_mode].split(".")[0]
  curr_use_case = use_case[app_mode].split(".")[0]
  st.markdown("<h5 style='text-align: center;'>State-of-the-art model for salient object detection</h5>", unsafe_allow_html=True)
  st.markdown(f"<div style='color: #4f4f4f; text-align: left'>Use cases for salient object detection<br/>&nbsp;&nbsp;&nbsp;•&nbsp;&nbsp;{use_case['1']}<br/>&nbsp;&nbsp;&nbsp;•&nbsp;&nbsp;{use_case['2']}</div>", unsafe_allow_html=True)
  st.markdown(f"<div style='color: #9f9f9f; text-align: right'>views:&nbsp;{get_views('init')}</div>", unsafe_allow_html=True)


  try:
      
      
      with st.form('twc_form'):

        step1_line = "Upload an image or choose an example image below"
        uploaded_file = st.file_uploader(step1_line, type=["png","jpg","jpeg"])

        selected_file_name = image_select("Select image", ["twc_samples/sample1.jpg", "twc_samples/sample2.jpg", "twc_samples/sample3.jpg", "twc_samples/sample4.jpg"])


        st.write("")
        mask_type = st.selectbox(label=f'Select type of masking',  
                    options = list(dict.keys(mask_types)), index=0,  key = "twc_mask_types")
        mask_type = mask_types[mask_type]
        st.write("")
        submit_button = st.form_submit_button('Run')
        options_arr,markdown_str = construct_model_info_for_display(model_names)

        
        input_status_area = st.empty()
        display_area = st.empty()
        if submit_button:
            start = time.time()
            if uploaded_file is not None:
                st.session_state["file_name"]  = uploaded_file.name
            else:
                st.session_state["file_name"]  = selected_file_name
            st.session_state["mask_type"]  = mask_type
            display_area.empty()
            results = run_test(config,st.session_state["file_name"],display_area,uploaded_file,mask_type)
            with display_area.container():
                if ("error" in results):
                    st.error(results["error"])
                else:
                    device = 'GPU' if torch.cuda.is_available() else 'CPU'
                    response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for image size: {results['size']} bytes"
                    display_results(results,response_info,mask_type)
                    #st.json(results)
      st.download_button(
         label="Download results as png",
         data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "",
         disabled = False if st.session_state["download_ready"] != None else True,
         file_name= (st.session_state["model_name"] + "_"  + st.session_state["mask_type"] + "_" +  '_'.join(st.session_state["file_name"].split(".")[:-1]) + ".png").replace("/","_"),
         mime='image/png',
         key ="download" 
        )
      
      

  except Exception as e:
    st.error("Some error occurred during loading" + str(e))
    st.stop()  
	
  st.markdown(markdown_str, unsafe_allow_html=True)
  
 

if __name__ == "__main__":
   app_main("1","sod_app_examples.json","sod_app_models.json","config.json")