File size: 10,274 Bytes
72935b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f0a627
 
 
 
 
 
 
72935b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b60cda7
72935b7
b60cda7
72935b7
 
 
 
 
b60cda7
 
 
 
 
 
72935b7
 
 
 
 
b60cda7
72935b7
 
 
 
 
 
 
 
 
 
 
b60cda7
 
 
 
 
 
 
 
72935b7
b60cda7
72935b7
b60cda7
72935b7
 
 
 
b60cda7
72935b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b60cda7
 
72935b7
 
 
 
 
 
 
 
 
 
 
b60cda7
72935b7
 
 
 
 
 
 
 
 
 
2f0a627
72935b7
b60cda7
72935b7
 
 
 
 
 
 
b60cda7
 
72935b7
 
b60cda7
 
72935b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b60cda7
72935b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b60cda7
72935b7
 
 
 
 
 
b60cda7
72935b7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import time
import sys
import streamlit as st
import string
import os
from io import StringIO 
import pdb
import json
import torch
import requests
import socket
from streamlit_image_select import image_select





use_case = {"1":"Image background removal - (upload any picture and remove background)","2":"Masking foreground for downstream inpainting task"}
mask_types = {
"rgba - makes background white":"rgba",
"green - makes the background green":"green",
"blur - blurs background":"blur",
"map - makes the foreground white and rest black ":"map"
}



APP_NAME = "hf/salient_object_detection"
INFO_URL = "https://www.taskswithcode.com/stats/"
TMP_DIR="tmp_dir"
TMP_SEED = 1



        

def get_views(action):
    ret_val = 0
    #return "{:,}".format(ret_val)
    hostname = socket.gethostname()
    ip_address = socket.gethostbyname(hostname)
    if ("view_count" not in st.session_state):
        try:
           app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
           res = requests.post(INFO_URL, json = app_info).json()
           print(res)
           data = res["count"]
        except Exception as e:
           data = 0
           print(f"Exception in get_views - uncached case. view count not cached: {str(e)}")
        ret_val = data
        st.session_state["view_count"] = data
    else:
        ret_val = st.session_state["view_count"]
        if (action != "init"):
           try:
               app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
               print(app_info)
               res = requests.post(INFO_URL, json = app_info).json()
           except Exception as e:
                print(f"Exception in get_views - Non init case. view count not cached: {str(e)}")
    return "{:,}".format(ret_val)
        



def construct_model_info_for_display(model_names,api_info):
    options_arr  = []
    #markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b><br/></div>"
    markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Model evaluated </b><br/></div>"
    markdown_str += f"<div style=\"font-size:2px; color: #2f2f2f; text-align: left\"><br/></div>"
    for node in model_names:
        options_arr .append(node["name"])
        if (node["mark"] == "True"):
            markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: left\">&nbsp;•&nbsp;Model:&nbsp;<a href=\'{node['paper_url']}\' target='_blank'>{node['name']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Code released by:&nbsp;<a href=\'{node['orig_author_url']}\' target='_blank'>{node['orig_author']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Model info:&nbsp;<a href=\'{node['sota_info']['sota_link']}\' target='_blank'>{node['sota_info']['task']}</a></div>"
            if ("Note" in node):
                markdown_str += f"<div style=\"font-size:16px; color: #a91212; text-align: left\">&nbsp;&nbsp;&nbsp;&nbsp;{node['Note']}<a href=\'{node['alt_url']}\' target='_blank'>link</a></div>"
            markdown_str += "<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"><br/></div>"

    
    markdown_str += f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><b>{api_info['desc']}</b><br/></div>"
    for method in api_info["methods"]:
        lang = method["lang"]
        example = open(method["usage"]).read()
        markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: center\"><b>{lang} usage</b></div>"
        markdown_str += f"<div style=\"font-size:14px; color: #bfbfbf; text-align: left\">{example}<br/></div>"
        
    markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><b><br/>Note:</b><br/>•&nbsp;Uploaded files are loaded into non-persistent memory for the duration of the computation. They are not cached</div>"
    markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><br/><a href=\'https://github.com/taskswithcode/salient_object_detection_app.git\' target='_blank'>Github code</a> for this app</div>"

    return options_arr,markdown_str


def init_page():
    st.set_page_config(page_title='TWC - Image foreground masking or background removal with state-of-the-art models', page_icon="logo.jpg", layout='centered', initial_sidebar_state='auto',
            menu_items={
             'About': 'This app was created by taskswithcode. http://taskswithcode.com'
             
              })
    col,pad = st.columns([85,15])

    with col:
        st.image("long_form_logo_with_icon.png")


def run_test(config,input_file_name,display_area,uploaded_file,mask_type):
    global TMP_SEED
    display_area.text("Processing request...")
    try:
        if (uploaded_file is None):
            file_data = open(input_file_name, "rb")
            r = requests.post(config["SERVER_ADDRESS"], data={"mask":mask_type}, files={"test":file_data})
        else:
            file_data = uploaded_file.read()
            file_name = f"{TMP_DIR}/{TMP_SEED}_{str(time.time()).replace('.','_')}_{uploaded_file.name}"
            TMP_SEED += 1
            with open(file_name,"wb") as fp:
                fp.write(file_data)
            file_data = open(file_name, "rb")
            r = requests.post(config["SERVER_ADDRESS"], data={"mask":mask_type}, files={"test":file_data})
            os.remove(file_name)
        print("Servers response:",r.status_code,len(r.content))
        if (r.status_code == 200):
            size = "{:,}".format(len(r.content))
            return {"response":r.content,"size":size}
        else:
            return {"error":f"API request failed {r.status_code}"}
    except Exception as e:
        st.error("Some error occurred during prediction" + str(e))
        #st.stop()
        return {"error":f"Exception in performing image masking: {str(e)}"}
    return {} 


    

def display_results(results,response_info,mask):
    main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
    body_sent = []
    download_data = {}
    main_sent = main_sent + "\n" + '\n'.join(body_sent)
    st.markdown(main_sent,unsafe_allow_html=True)
    st.image(results["response"], caption=f'Output of Image background removal with mask: {mask}')
    st.session_state["download_ready"]  = results["response"]
    get_views("submit")


def init_session():
    init_page()
    st.session_state["model_name"] = "insprynet"
    st.session_state["download_ready"] = None    
    st.session_state["model_name"] = "ss_test"
    st.session_state["file_name"] = "default"
    st.session_state["mask_type"] = "rgba"
 
def app_main(app_mode,example_files,model_name_files,api_info_files,config_file):
  init_session()
  with open(example_files) as fp:
        example_file_names = json.load(fp) 
  with open(model_name_files) as fp:
        model_names = json.load(fp)
  with open(config_file) as fp:
        config = json.load(fp)
  with open(api_info_files) as fp:
        api_info = json.load(fp)
  curr_use_case = use_case[app_mode].split(".")[0]
  curr_use_case = use_case[app_mode].split(".")[0]
  st.markdown("<h5 style='text-align: center;'>Image foreground masking or background removal</h5>", unsafe_allow_html=True)
  st.markdown(f"<div style='color: #4f4f4f; text-align: left'>Image masking using state-of-the-art models for salient object detection(SOD). SOD use cases are<br/>&nbsp;&nbsp;&nbsp;•&nbsp;&nbsp;{use_case['1']}<br/>&nbsp;&nbsp;&nbsp;•&nbsp;&nbsp;{use_case['2']}</div>", unsafe_allow_html=True)
  st.markdown(f"<div style='color: #9f9f9f; text-align: right'>views:&nbsp;{get_views('init')}</div>", unsafe_allow_html=True)


  try:
      
      
      with st.form('twc_form'):

        step1_line = "Upload an image or choose an example image below"
        uploaded_file = st.file_uploader(step1_line, type=["png","jpg","jpeg"])

        selected_file_name = image_select("Select image", ["twc_samples/sample1.jpg", "twc_samples/sample2.jpg", "twc_samples/sample3.jpg", "twc_samples/sample4.jpg"])


        st.write("")
        mask_type = st.selectbox(label=f'Select type of masking',  
                    options = list(dict.keys(mask_types)), index=0,  key = "twc_mask_types")
        mask_type = mask_types[mask_type]
        st.write("")
        submit_button = st.form_submit_button('Run')
        options_arr,markdown_str = construct_model_info_for_display(model_names,api_info)

        
        input_status_area = st.empty()
        display_area = st.empty()
        if submit_button:
            start = time.time()
            if uploaded_file is not None:
                st.session_state["file_name"]  = uploaded_file.name
            else:
                st.session_state["file_name"]  = selected_file_name
            st.session_state["mask_type"]  = mask_type
            display_area.empty()
            results = run_test(config,st.session_state["file_name"],display_area,uploaded_file,mask_type)
            with display_area.container():
                if ("error" in results):
                    st.error(results["error"])
                else:
                    device = 'GPU' if torch.cuda.is_available() else 'CPU'
                    response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for image size: {results['size']} bytes"
                    display_results(results,response_info,mask_type)
                    #st.json(results)
      st.download_button(
         label="Download results as png",
         data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "",
         disabled = False if st.session_state["download_ready"] != None else True,
         file_name= (st.session_state["model_name"] + "_"  + st.session_state["mask_type"] + "_" +  '_'.join(st.session_state["file_name"].split(".")[:-1]) + ".png").replace("/","_"),
         mime='image/png',
         key ="download" 
        )
      
      

  except Exception as e:
    st.error("Some error occurred during loading" + str(e))
    #st.stop()  
	
  st.markdown(markdown_str, unsafe_allow_html=True)
  
 

if __name__ == "__main__":
   app_main("1","sod_app_examples.json","sod_app_models.json","sod_apis.json","config.json")