Spaces:
No application file
No application file
File size: 805 Bytes
d5b85a1 919b967 381295f d5b85a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import gradio as gr
import joblib
from sklearn.feature_extraction.text import CountVectorizer
# Install the required libraries if you don't have them already
# !pip install gradio joblib scikit-learn
# Load the saved model and vectorizer
clf = joblib.load("./resturants.pkl",'rb')
vectorizer = joblib.load("./vectorizer.joblib")
# Define the prediction function
def predict_text(text):
# Vectorize the input text using the loaded vectorizer
text_vectorized = vectorizer.transform([text])
# Make the prediction using the loaded model
predicted_output = clf.predict(text_vectorized)
# Return the predicted output (0 or 1)
return predicted_output[0]
# Create a Gradio interface
iface = gr.Interface(
fn=predict_text,
inputs="text",
outputs=["text"]
)
iface.launch() |