Commit
·
ae3ff72
1
Parent(s):
4a09976
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import streamlit as st
|
3 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
4 |
+
import re
|
5 |
+
import string
|
6 |
+
|
7 |
+
def tokenize_sentences(sentence):
|
8 |
+
encoded_dict = tokenizer.encode_plus(
|
9 |
+
sentence,
|
10 |
+
add_special_tokens=True,
|
11 |
+
max_length=128,
|
12 |
+
padding='max_length',
|
13 |
+
truncation=True,
|
14 |
+
return_attention_mask=True,
|
15 |
+
return_tensors='pt'
|
16 |
+
)
|
17 |
+
return torch.cat([encoded_dict['input_ids']], dim=0), torch.cat([encoded_dict['attention_mask']], dim=0)
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
def preprocess_query(query):
|
22 |
+
query = str(query).lower()
|
23 |
+
query = query.strip()
|
24 |
+
query=query.translate(str.maketrans("", "", string.punctuation))
|
25 |
+
return query
|
26 |
+
|
27 |
+
def predict_category(sentence, threshold):
|
28 |
+
input_ids, attention_mask = tokenize_sentences(sentence)
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = categories_model(input_ids, attention_mask=attention_mask)
|
31 |
+
logits = outputs.logits
|
32 |
+
predicted_categories = torch.sigmoid(logits).squeeze().tolist()
|
33 |
+
results = dict()
|
34 |
+
for label, prediction in zip(LABEL_COLUMNS_CATEGORIES, predicted_categories):
|
35 |
+
if prediction < threshold:
|
36 |
+
continue
|
37 |
+
precentage = round(float(prediction) * 100, 2)
|
38 |
+
results[label] = precentage
|
39 |
+
return results
|
40 |
+
|
41 |
+
# Load tokenizer and model
|
42 |
+
BERT_MODEL_NAME_FOR_CATEGORIES_CLASSIFICATION = 'roberta-large'
|
43 |
+
tokenizer = RobertaTokenizer.from_pretrained(BERT_MODEL_NAME_FOR_CATEGORIES_CLASSIFICATION, do_lower_case=True)
|
44 |
+
|
45 |
+
LABEL_COLUMNS_CATEGORIES = ['AMBIENCE', 'DRINK', 'FOOD', 'GENERAL', 'RESTAURANT', 'SERVICE', 'STAFF']
|
46 |
+
|
47 |
+
categories_model = RobertaForSequenceClassification.from_pretrained(BERT_MODEL_NAME_FOR_CATEGORIES_CLASSIFICATION, num_labels=len(LABEL_COLUMNS_CATEGORIES))
|
48 |
+
categories_model.load_state_dict(torch.load('./Categories_Classification_Model_updated.pth'))
|
49 |
+
categories_model.eval()
|
50 |
+
|
51 |
+
# Streamlit App
|
52 |
+
st.title("Review/Sentence Classification")
|
53 |
+
st.write("Multilable/Multiclass Sentence classification under 7 Defined Categories. ")
|
54 |
+
|
55 |
+
sentence = st.text_input("Enter a sentence:")
|
56 |
+
threshold = st.slider("Threshold", min_value=0.0, max_value=1.0, step=0.01, value=0.5)
|
57 |
+
|
58 |
+
if sentence:
|
59 |
+
processed_sentence = preprocess_query(sentence)
|
60 |
+
results = predict_category(processed_sentence, threshold)
|
61 |
+
if len(results) > 0:
|
62 |
+
st.write("Predicted Aspects:")
|
63 |
+
table_data = [["Category", "Probability"]]
|
64 |
+
for category, percentage in results.items():
|
65 |
+
table_data.append([category, f"{percentage}%"])
|
66 |
+
st.table(table_data)
|
67 |
+
else:
|
68 |
+
st.write("No Categories above the threshold.")
|