Spaces:
Sleeping
Sleeping
add files
Browse files- .idea/.gitignore +3 -0
- .idea/Aliae_anonymizer.iml +10 -0
- .idea/inspectionProfiles/Project_Default.xml +12 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +4 -0
- .idea/modules.xml +8 -0
- .idea/vcs.xml +6 -0
- __pycache__/presidio_helpers.cpython-310.pyc +0 -0
- __pycache__/presidio_nlp_engine_config.cpython-310.pyc +0 -0
- en_demo_text.txt +14 -0
- fr_demo_text.txt +14 -0
- logo.png +0 -0
- presidio_helpers.py +261 -0
- presidio_nlp_engine_config.py +141 -0
- presidio_streamlit.py +352 -0
- recognizers.yaml +100 -0
- requirements.txt +13 -0
.idea/.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
.idea/Aliae_anonymizer.iml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$">
|
5 |
+
<excludeFolder url="file://$MODULE_DIR$/venv" />
|
6 |
+
</content>
|
7 |
+
<orderEntry type="jdk" jdkName="Python 3.10" jdkType="Python SDK" />
|
8 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
9 |
+
</component>
|
10 |
+
</module>
|
.idea/inspectionProfiles/Project_Default.xml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<profile version="1.0">
|
3 |
+
<option name="myName" value="Project Default" />
|
4 |
+
<inspection_tool class="PyUnresolvedReferencesInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
5 |
+
<option name="ignoredIdentifiers">
|
6 |
+
<list>
|
7 |
+
<option value="graphbot.graphize.GraphBot.graphize" />
|
8 |
+
</list>
|
9 |
+
</option>
|
10 |
+
</inspection_tool>
|
11 |
+
</profile>
|
12 |
+
</component>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<settings>
|
3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
+
<version value="1.0" />
|
5 |
+
</settings>
|
6 |
+
</component>
|
.idea/misc.xml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.10" project-jdk-type="Python SDK" />
|
4 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/Aliae_anonymizer.iml" filepath="$PROJECT_DIR$/.idea/Aliae_anonymizer.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
.idea/vcs.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="VcsDirectoryMappings">
|
4 |
+
<mapping directory="" vcs="Git" />
|
5 |
+
</component>
|
6 |
+
</project>
|
__pycache__/presidio_helpers.cpython-310.pyc
ADDED
Binary file (6.11 kB). View file
|
|
__pycache__/presidio_nlp_engine_config.cpython-310.pyc
ADDED
Binary file (1.13 kB). View file
|
|
en_demo_text.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hello, my name is David Johnson and I live in Maine.
|
2 |
+
My credit card number is 4095-2609-9393-4932 and my crypto wallet id is 16Yeky6GMjeNkAiNcBY7ZhrLoMSgg1BoyZ.
|
3 |
+
|
4 |
+
On September 18 I visited microsoft.com and sent an email to test@presidio.site, from the IP 192.168.0.1.
|
5 |
+
|
6 |
+
My passport: 59RF05400 and my phone number: +330788848206.
|
7 |
+
|
8 |
+
This is a valid International Bank Account Number: FR76 3000 6000 0112 3456 7890 189 or FR7630006000011234567890189 .
|
9 |
+
|
10 |
+
Kate's social security number is 269054958815780.
|
11 |
+
|
12 |
+
Pierre's nationalality is french. He was born at 01/02/1990.
|
13 |
+
|
14 |
+
His national id is 345623456789 or maybe X4RTBPFW4.
|
fr_demo_text.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Bonjour, je m'appelle David Johnson et j'habite dans le Maine.
|
2 |
+
Mon numéro de carte de crédit est 4095-2609-9393-4932 et mon identifiant de portefeuille crypto est 16Yeky6GMjeNkAiNcBY7ZhrLoMSgg1BoyZ.
|
3 |
+
|
4 |
+
Le 18 septembre, j'ai visité microsoft.com et envoyé un e-mail à test@presidio.site, à partir de l'IP 192.168.0.1.
|
5 |
+
|
6 |
+
Mon passeport : 59RF05400 et mon numéro de téléphone : +330788848206.
|
7 |
+
|
8 |
+
Il s'agit d'un numéro de compte bancaire international valide : FR76 3000 6000 0112 3456 7890 189 ou FR7630006000011234567890189.
|
9 |
+
|
10 |
+
Le numéro de sécurité sociale de Kate est le 269054958815780.
|
11 |
+
|
12 |
+
La nationalité de Pierre est française. Il est né le 01/02/1990.
|
13 |
+
|
14 |
+
Son identifiant national est 345623456789 ou peut-être X4RTBPFW4.
|
logo.png
ADDED
presidio_helpers.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Helper methods for the Presidio Streamlit app
|
3 |
+
"""
|
4 |
+
from typing import List, Optional, Tuple
|
5 |
+
import logging
|
6 |
+
import streamlit as st
|
7 |
+
from presidio_analyzer import (
|
8 |
+
AnalyzerEngine,
|
9 |
+
RecognizerResult,
|
10 |
+
RecognizerRegistry,
|
11 |
+
PatternRecognizer,
|
12 |
+
Pattern,
|
13 |
+
)
|
14 |
+
from presidio_analyzer.nlp_engine import NlpEngine
|
15 |
+
from presidio_anonymizer import AnonymizerEngine
|
16 |
+
from presidio_anonymizer.entities import OperatorConfig
|
17 |
+
|
18 |
+
# from openai_fake_data_generator import (
|
19 |
+
# set_openai_params,
|
20 |
+
# call_completion_model,
|
21 |
+
# create_prompt,
|
22 |
+
# OpenAIParams,
|
23 |
+
# )
|
24 |
+
from presidio_nlp_engine_config import (
|
25 |
+
create_nlp_engine_with_spacy,
|
26 |
+
# create_nlp_engine_with_flair,
|
27 |
+
# create_nlp_engine_with_transformers,
|
28 |
+
# create_nlp_engine_with_azure_text_analytics,
|
29 |
+
)
|
30 |
+
|
31 |
+
logger = logging.getLogger("presidio-streamlit")
|
32 |
+
|
33 |
+
|
34 |
+
@st.cache_resource
|
35 |
+
def nlp_engine_and_registry(
|
36 |
+
model_family: str,
|
37 |
+
model_path: str,
|
38 |
+
ta_key: Optional[str] = None,
|
39 |
+
ta_endpoint: Optional[str] = None,
|
40 |
+
) -> Tuple[NlpEngine, RecognizerRegistry]:
|
41 |
+
"""Create the NLP Engine instance based on the requested model.
|
42 |
+
:param model_family: Which model package to use for NER.
|
43 |
+
:param model_path: Which model to use for NER. E.g.,
|
44 |
+
"StanfordAIMI/stanford-deidentifier-base",
|
45 |
+
"obi/deid_roberta_i2b2",
|
46 |
+
"en_core_web_lg"
|
47 |
+
:param ta_key: Key to the Text Analytics endpoint (only if model_path = "Azure Text Analytics")
|
48 |
+
:param ta_endpoint: Endpoint of the Text Analytics instance (only if model_path = "Azure Text Analytics")
|
49 |
+
"""
|
50 |
+
|
51 |
+
# Set up NLP Engine according to the model of choice
|
52 |
+
if "spaCy" in model_family:
|
53 |
+
return create_nlp_engine_with_spacy(model_path)
|
54 |
+
# elif "flair" in model_family:
|
55 |
+
# return create_nlp_engine_with_flair(model_path)
|
56 |
+
elif "HuggingFace" in model_family:
|
57 |
+
return create_nlp_engine_with_transformers(model_path)
|
58 |
+
# elif "Azure Text Analytics" in model_family:
|
59 |
+
# return create_nlp_engine_with_azure_text_analytics(ta_key, ta_endpoint)
|
60 |
+
# else:
|
61 |
+
# raise ValueError(f"Model family {model_family} not supported")
|
62 |
+
|
63 |
+
|
64 |
+
@st.cache_resource
|
65 |
+
def analyzer_engine(
|
66 |
+
model_family: str,
|
67 |
+
model_path: str,
|
68 |
+
ta_key: Optional[str] = None,
|
69 |
+
ta_endpoint: Optional[str] = None,
|
70 |
+
) -> AnalyzerEngine:
|
71 |
+
"""Create the NLP Engine instance based on the requested model.
|
72 |
+
:param model_family: Which model package to use for NER.
|
73 |
+
:param model_path: Which model to use for NER:
|
74 |
+
"StanfordAIMI/stanford-deidentifier-base",
|
75 |
+
"obi/deid_roberta_i2b2",
|
76 |
+
"en_core_web_lg"
|
77 |
+
:param ta_key: Key to the Text Analytics endpoint (only if model_path = "Azure Text Analytics")
|
78 |
+
:param ta_endpoint: Endpoint of the Text Analytics instance (only if model_path = "Azure Text Analytics")
|
79 |
+
"""
|
80 |
+
nlp_engine, registry = nlp_engine_and_registry(
|
81 |
+
model_family, model_path, ta_key, ta_endpoint
|
82 |
+
)
|
83 |
+
analyzer = AnalyzerEngine(nlp_engine=nlp_engine, registry=registry, supported_languages=['fr', 'en'])
|
84 |
+
return analyzer
|
85 |
+
|
86 |
+
|
87 |
+
@st.cache_resource
|
88 |
+
def anonymizer_engine():
|
89 |
+
"""Return AnonymizerEngine."""
|
90 |
+
return AnonymizerEngine()
|
91 |
+
|
92 |
+
|
93 |
+
@st.cache_data
|
94 |
+
def get_supported_entities(
|
95 |
+
model_family: str, model_path: str, ta_key: str, ta_endpoint: str
|
96 |
+
):
|
97 |
+
"""Return supported entities from the Analyzer Engine."""
|
98 |
+
# return analyzer_engine(
|
99 |
+
# model_family, model_path, ta_key, ta_endpoint
|
100 |
+
# ).get_supported_entities() + ["GENERIC_PII"]
|
101 |
+
return ["PERSON", "IBAN_CODE", "PHONE_NUMBER", "CREDIT_CARD", "CRYPTO", "DATE_TIME", "EMAIL_ADDRESS", "IP_ADDRESS", "NRP", "LOCATION", "URL", "FRENCH_SSN", "FRENCH_PASS", "FRENCH_NID"]
|
102 |
+
|
103 |
+
|
104 |
+
@st.cache_data
|
105 |
+
def analyze(
|
106 |
+
model_family: str, model_path: str, ta_key: str, ta_endpoint: str, **kwargs
|
107 |
+
):
|
108 |
+
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
|
109 |
+
if "entities" not in kwargs or "All" in kwargs["entities"]:
|
110 |
+
kwargs["entities"] = None
|
111 |
+
|
112 |
+
if "deny_list" in kwargs and kwargs["deny_list"] is not None:
|
113 |
+
ad_hoc_recognizer = create_ad_hoc_deny_list_recognizer(kwargs["deny_list"])
|
114 |
+
kwargs["ad_hoc_recognizers"] = [ad_hoc_recognizer] if ad_hoc_recognizer else []
|
115 |
+
del kwargs["deny_list"]
|
116 |
+
|
117 |
+
if "regex_params" in kwargs and len(kwargs["regex_params"]) > 0:
|
118 |
+
ad_hoc_recognizer = create_ad_hoc_regex_recognizer(*kwargs["regex_params"])
|
119 |
+
kwargs["ad_hoc_recognizers"] = [ad_hoc_recognizer] if ad_hoc_recognizer else []
|
120 |
+
del kwargs["regex_params"]
|
121 |
+
|
122 |
+
return analyzer_engine(model_family, model_path, ta_key, ta_endpoint).analyze(
|
123 |
+
**kwargs
|
124 |
+
)
|
125 |
+
|
126 |
+
|
127 |
+
def anonymize(
|
128 |
+
text: str,
|
129 |
+
operator: str,
|
130 |
+
analyze_results: List[RecognizerResult],
|
131 |
+
mask_char: Optional[str] = None,
|
132 |
+
number_of_chars: Optional[str] = None,
|
133 |
+
encrypt_key: Optional[str] = None,
|
134 |
+
):
|
135 |
+
"""Anonymize identified input using Presidio Anonymizer.
|
136 |
+
|
137 |
+
:param text: Full text
|
138 |
+
:param operator: Operator name
|
139 |
+
:param mask_char: Mask char (for mask operator)
|
140 |
+
:param number_of_chars: Number of characters to mask (for mask operator)
|
141 |
+
:param encrypt_key: Encryption key (for encrypt operator)
|
142 |
+
:param analyze_results: list of results from presidio analyzer engine
|
143 |
+
"""
|
144 |
+
|
145 |
+
if operator == "mask":
|
146 |
+
operator_config = {
|
147 |
+
"type": "mask",
|
148 |
+
"masking_char": mask_char,
|
149 |
+
"chars_to_mask": number_of_chars,
|
150 |
+
"from_end": False,
|
151 |
+
}
|
152 |
+
|
153 |
+
# Define operator config
|
154 |
+
elif operator == "encrypt":
|
155 |
+
operator_config = {"key": encrypt_key}
|
156 |
+
elif operator == "highlight":
|
157 |
+
operator_config = {"lambda": lambda x: x}
|
158 |
+
else:
|
159 |
+
operator_config = None
|
160 |
+
|
161 |
+
# Change operator if needed as intermediate step
|
162 |
+
if operator == "highlight":
|
163 |
+
operator = "custom"
|
164 |
+
elif operator == "synthesize":
|
165 |
+
operator = "replace"
|
166 |
+
else:
|
167 |
+
operator = operator
|
168 |
+
|
169 |
+
res = anonymizer_engine().anonymize(
|
170 |
+
text,
|
171 |
+
analyze_results,
|
172 |
+
operators={"DEFAULT": OperatorConfig(operator, operator_config)},
|
173 |
+
)
|
174 |
+
return res
|
175 |
+
|
176 |
+
|
177 |
+
def annotate(text: str, analyze_results: List[RecognizerResult]):
|
178 |
+
"""Highlight the identified PII entities on the original text
|
179 |
+
|
180 |
+
:param text: Full text
|
181 |
+
:param analyze_results: list of results from presidio analyzer engine
|
182 |
+
"""
|
183 |
+
tokens = []
|
184 |
+
|
185 |
+
# Use the anonymizer to resolve overlaps
|
186 |
+
results = anonymize(
|
187 |
+
text=text,
|
188 |
+
operator="highlight",
|
189 |
+
analyze_results=analyze_results,
|
190 |
+
)
|
191 |
+
|
192 |
+
# sort by start index
|
193 |
+
results = sorted(results.items, key=lambda x: x.start)
|
194 |
+
for i, res in enumerate(results):
|
195 |
+
if i == 0:
|
196 |
+
tokens.append(text[: res.start])
|
197 |
+
|
198 |
+
# append entity text and entity type
|
199 |
+
tokens.append((text[res.start : res.end], res.entity_type))
|
200 |
+
|
201 |
+
# if another entity coming i.e. we're not at the last results element, add text up to next entity
|
202 |
+
if i != len(results) - 1:
|
203 |
+
tokens.append(text[res.end : results[i + 1].start])
|
204 |
+
# if no more entities coming, add all remaining text
|
205 |
+
else:
|
206 |
+
tokens.append(text[res.end :])
|
207 |
+
return tokens
|
208 |
+
|
209 |
+
|
210 |
+
# def create_fake_data(
|
211 |
+
# text: str,
|
212 |
+
# analyze_results: List[RecognizerResult],
|
213 |
+
# openai_params: OpenAIParams,
|
214 |
+
# ):
|
215 |
+
# """Creates a synthetic version of the text using OpenAI APIs"""
|
216 |
+
# if not openai_params.openai_key:
|
217 |
+
# return "Please provide your OpenAI key"
|
218 |
+
# results = anonymize(text=text, operator="replace", analyze_results=analyze_results)
|
219 |
+
# set_openai_params(openai_params)
|
220 |
+
# prompt = create_prompt(results.text)
|
221 |
+
# print(f"Prompt: {prompt}")
|
222 |
+
# fake = call_openai_api(
|
223 |
+
# prompt=prompt,
|
224 |
+
# openai_model_name=openai_params.model,
|
225 |
+
# openai_deployment_name=openai_params.deployment_name,
|
226 |
+
# )
|
227 |
+
# return fake
|
228 |
+
|
229 |
+
|
230 |
+
# @st.cache_data
|
231 |
+
# def call_openai_api(
|
232 |
+
# prompt: str, openai_model_name: str, openai_deployment_name: Optional[str] = None
|
233 |
+
# ) -> str:
|
234 |
+
# fake_data = call_completion_model(
|
235 |
+
# prompt, model=openai_model_name, deployment_id=openai_deployment_name
|
236 |
+
# )
|
237 |
+
# return fake_data
|
238 |
+
|
239 |
+
|
240 |
+
def create_ad_hoc_deny_list_recognizer(
|
241 |
+
deny_list=Optional[List[str]],
|
242 |
+
) -> Optional[PatternRecognizer]:
|
243 |
+
if not deny_list:
|
244 |
+
return None
|
245 |
+
|
246 |
+
deny_list_recognizer = PatternRecognizer(
|
247 |
+
supported_entity="GENERIC_PII", deny_list=deny_list
|
248 |
+
)
|
249 |
+
return deny_list_recognizer
|
250 |
+
|
251 |
+
|
252 |
+
def create_ad_hoc_regex_recognizer(
|
253 |
+
regex: str, entity_type: str, score: float, context: Optional[List[str]] = None
|
254 |
+
) -> Optional[PatternRecognizer]:
|
255 |
+
if not regex:
|
256 |
+
return None
|
257 |
+
pattern = Pattern(name="Regex pattern", regex=regex, score=score)
|
258 |
+
regex_recognizer = PatternRecognizer(
|
259 |
+
supported_entity=entity_type, patterns=[pattern], context=context
|
260 |
+
)
|
261 |
+
return regex_recognizer
|
presidio_nlp_engine_config.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
import logging
|
3 |
+
import spacy
|
4 |
+
from presidio_analyzer import RecognizerRegistry
|
5 |
+
from presidio_analyzer.nlp_engine import NlpEngine, NlpEngineProvider
|
6 |
+
|
7 |
+
logger = logging.getLogger("presidio-streamlit")
|
8 |
+
|
9 |
+
|
10 |
+
def create_nlp_engine_with_spacy(
|
11 |
+
model_path: str,
|
12 |
+
) -> Tuple[NlpEngine, RecognizerRegistry]:
|
13 |
+
"""
|
14 |
+
Instantiate an NlpEngine with a spaCy model
|
15 |
+
:param model_path: spaCy model path.
|
16 |
+
"""
|
17 |
+
if not spacy.util.is_package(model_path):
|
18 |
+
spacy.cli.download(model_path)
|
19 |
+
|
20 |
+
nlp_configuration = {
|
21 |
+
"nlp_engine_name": "spacy",
|
22 |
+
"models": [{"lang_code": model_path.split('_')[0], "model_name": model_path}],
|
23 |
+
}
|
24 |
+
|
25 |
+
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
|
26 |
+
|
27 |
+
registry = RecognizerRegistry()
|
28 |
+
# registry.load_predefined_recognizers()
|
29 |
+
registry.load_predefined_recognizers(nlp_engine=nlp_engine, languages=["fr", "en"])
|
30 |
+
registry.add_recognizers_from_yaml("recognizers.yaml")
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
return nlp_engine, registry
|
35 |
+
|
36 |
+
|
37 |
+
# def create_nlp_engine_with_transformers(
|
38 |
+
# model_path: str,
|
39 |
+
# ) -> Tuple[NlpEngine, RecognizerRegistry]:
|
40 |
+
# """
|
41 |
+
# Instantiate an NlpEngine with a TransformersRecognizer and a small spaCy model.
|
42 |
+
# The TransformersRecognizer would return results from Transformers models, the spaCy model
|
43 |
+
# would return NlpArtifacts such as POS and lemmas.
|
44 |
+
# :param model_path: HuggingFace model path.
|
45 |
+
# """
|
46 |
+
#
|
47 |
+
# from transformers_rec import (
|
48 |
+
# STANFORD_COFIGURATION,
|
49 |
+
# BERT_DEID_CONFIGURATION,
|
50 |
+
# TransformersRecognizer,
|
51 |
+
# )
|
52 |
+
#
|
53 |
+
# registry = RecognizerRegistry()
|
54 |
+
# registry.load_predefined_recognizers()
|
55 |
+
#
|
56 |
+
# if not spacy.util.is_package("en_core_web_sm"):
|
57 |
+
# spacy.cli.download("en_core_web_sm")
|
58 |
+
# # Using a small spaCy model + a HF NER model
|
59 |
+
# transformers_recognizer = TransformersRecognizer(model_path=model_path)
|
60 |
+
#
|
61 |
+
# if model_path == "StanfordAIMI/stanford-deidentifier-base":
|
62 |
+
# transformers_recognizer.load_transformer(**STANFORD_COFIGURATION)
|
63 |
+
# elif model_path == "obi/deid_roberta_i2b2":
|
64 |
+
# transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION)
|
65 |
+
# else:
|
66 |
+
# print(f"Warning: Model has no configuration, loading default.")
|
67 |
+
# transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION)
|
68 |
+
#
|
69 |
+
# # Use small spaCy model, no need for both spacy and HF models
|
70 |
+
# # The transformers model is used here as a recognizer, not as an NlpEngine
|
71 |
+
# nlp_configuration = {
|
72 |
+
# "nlp_engine_name": "spacy",
|
73 |
+
# "models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
|
74 |
+
# }
|
75 |
+
#
|
76 |
+
# registry.add_recognizer(transformers_recognizer)
|
77 |
+
# registry.remove_recognizer("SpacyRecognizer")
|
78 |
+
#
|
79 |
+
# nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
|
80 |
+
#
|
81 |
+
# return nlp_engine, registry
|
82 |
+
|
83 |
+
|
84 |
+
# def create_nlp_engine_with_flair(
|
85 |
+
# model_path: str,
|
86 |
+
# ) -> Tuple[NlpEngine, RecognizerRegistry]:
|
87 |
+
# """
|
88 |
+
# Instantiate an NlpEngine with a FlairRecognizer and a small spaCy model.
|
89 |
+
# The FlairRecognizer would return results from Flair models, the spaCy model
|
90 |
+
# would return NlpArtifacts such as POS and lemmas.
|
91 |
+
# :param model_path: Flair model path.
|
92 |
+
# """
|
93 |
+
# from flair_recognizer import FlairRecognizer
|
94 |
+
#
|
95 |
+
# registry = RecognizerRegistry()
|
96 |
+
# registry.load_predefined_recognizers()
|
97 |
+
#
|
98 |
+
# if not spacy.util.is_package("en_core_web_sm"):
|
99 |
+
# spacy.cli.download("en_core_web_sm")
|
100 |
+
# # Using a small spaCy model + a Flair NER model
|
101 |
+
# flair_recognizer = FlairRecognizer(model_path=model_path)
|
102 |
+
# nlp_configuration = {
|
103 |
+
# "nlp_engine_name": "spacy",
|
104 |
+
# "models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
|
105 |
+
# }
|
106 |
+
# registry.add_recognizer(flair_recognizer)
|
107 |
+
# registry.remove_recognizer("SpacyRecognizer")
|
108 |
+
#
|
109 |
+
# nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
|
110 |
+
#
|
111 |
+
# return nlp_engine, registry
|
112 |
+
|
113 |
+
|
114 |
+
# def create_nlp_engine_with_azure_text_analytics(ta_key: str, ta_endpoint: str):
|
115 |
+
# """
|
116 |
+
# Instantiate an NlpEngine with a TextAnalyticsWrapper and a small spaCy model.
|
117 |
+
# The TextAnalyticsWrapper would return results from calling Azure Text Analytics PII, the spaCy model
|
118 |
+
# would return NlpArtifacts such as POS and lemmas.
|
119 |
+
# :param ta_key: Azure Text Analytics key.
|
120 |
+
# :param ta_endpoint: Azure Text Analytics endpoint.
|
121 |
+
# """
|
122 |
+
# from text_analytics_wrapper import TextAnalyticsWrapper
|
123 |
+
#
|
124 |
+
# if not ta_key or not ta_endpoint:
|
125 |
+
# raise RuntimeError("Please fill in the Text Analytics endpoint details")
|
126 |
+
#
|
127 |
+
# registry = RecognizerRegistry()
|
128 |
+
# registry.load_predefined_recognizers()
|
129 |
+
#
|
130 |
+
# ta_recognizer = TextAnalyticsWrapper(ta_endpoint=ta_endpoint, ta_key=ta_key)
|
131 |
+
# nlp_configuration = {
|
132 |
+
# "nlp_engine_name": "spacy",
|
133 |
+
# "models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
|
134 |
+
# }
|
135 |
+
#
|
136 |
+
# nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
|
137 |
+
#
|
138 |
+
# registry.add_recognizer(ta_recognizer)
|
139 |
+
# registry.remove_recognizer("SpacyRecognizer")
|
140 |
+
#
|
141 |
+
# return nlp_engine, registry
|
presidio_streamlit.py
ADDED
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Streamlit app for Presidio."""
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import traceback
|
5 |
+
|
6 |
+
import dotenv
|
7 |
+
import pandas as pd
|
8 |
+
import streamlit as st
|
9 |
+
import streamlit.components.v1 as components
|
10 |
+
from annotated_text import annotated_text
|
11 |
+
from streamlit_tags import st_tags
|
12 |
+
|
13 |
+
# from openai_fake_data_generator import OpenAIParams
|
14 |
+
from presidio_helpers import (
|
15 |
+
get_supported_entities,
|
16 |
+
analyze,
|
17 |
+
anonymize,
|
18 |
+
annotate,
|
19 |
+
# create_fake_data,
|
20 |
+
analyzer_engine,
|
21 |
+
)
|
22 |
+
|
23 |
+
st.set_page_config(
|
24 |
+
page_title="Presidio demo",
|
25 |
+
layout="wide",
|
26 |
+
initial_sidebar_state="expanded",
|
27 |
+
# menu_items={
|
28 |
+
# "About": "https://microsoft.github.io/presidio/",
|
29 |
+
# },
|
30 |
+
)
|
31 |
+
|
32 |
+
dotenv.load_dotenv()
|
33 |
+
logger = logging.getLogger("presidio-streamlit")
|
34 |
+
|
35 |
+
|
36 |
+
allow_other_models = os.getenv("ALLOW_OTHER_MODELS", False)
|
37 |
+
|
38 |
+
|
39 |
+
# Sidebar
|
40 |
+
st.sidebar.header(
|
41 |
+
"""
|
42 |
+
Personal Info Anonymization
|
43 |
+
"""
|
44 |
+
)
|
45 |
+
|
46 |
+
# set aliae logo
|
47 |
+
st.sidebar.image('logo.png', use_column_width=True)
|
48 |
+
|
49 |
+
|
50 |
+
model_help_text = """
|
51 |
+
Select which Named Entity Recognition (NER) model to use for PII detection, in parallel to rule-based recognizers.
|
52 |
+
Presidio supports multiple NER packages off-the-shelf, such as spaCy, Huggingface, Stanza and Flair,
|
53 |
+
as well as service such as Azure Text Analytics PII.
|
54 |
+
"""
|
55 |
+
st_ta_key = st_ta_endpoint = ""
|
56 |
+
|
57 |
+
model_list = [
|
58 |
+
"spaCy/en_core_web_lg",
|
59 |
+
"spaCy/fr_core_news_md",
|
60 |
+
]
|
61 |
+
# "flair/ner-english-large",
|
62 |
+
#
|
63 |
+
# "HuggingFace/StanfordAIMI/stanford-deidentifier-base",
|
64 |
+
# "Azure Text Analytics PII",
|
65 |
+
# "Other",
|
66 |
+
|
67 |
+
|
68 |
+
# if not allow_other_models:
|
69 |
+
# model_list.pop()
|
70 |
+
|
71 |
+
|
72 |
+
# Select model
|
73 |
+
lang = st.sidebar.selectbox(
|
74 |
+
"Language",
|
75 |
+
['en','fr'],
|
76 |
+
index=0,
|
77 |
+
)
|
78 |
+
|
79 |
+
# Extract model package.
|
80 |
+
# st_model_package = st_model.split("/")[0]
|
81 |
+
st_model_package = 'spaCy'
|
82 |
+
|
83 |
+
# # Remove package prefix (if needed)
|
84 |
+
# st_model = (
|
85 |
+
# st_model
|
86 |
+
# if st_model_package not in ("spaCy", "HuggingFace")
|
87 |
+
# else "/".join(st_model.split("/")[1:])
|
88 |
+
# )
|
89 |
+
st_model = 'en_core_web_lg'
|
90 |
+
if lang =='en': st_model = 'en_core_web_lg'
|
91 |
+
elif lang == 'fr' : st_model = 'fr_core_news_md'
|
92 |
+
|
93 |
+
# if st_model == "Other":
|
94 |
+
# st_model_package = st.sidebar.selectbox(
|
95 |
+
# "NER model OSS package", options=["spaCy", "Flair", "HuggingFace"]
|
96 |
+
# )
|
97 |
+
# st_model = st.sidebar.text_input(f"NER model name", value="")
|
98 |
+
|
99 |
+
# if st_model == "Azure Text Analytics PII":
|
100 |
+
# st_ta_key = st.sidebar.text_input(
|
101 |
+
# f"Text Analytics key", value=os.getenv("TA_KEY", ""), type="password"
|
102 |
+
# )
|
103 |
+
# st_ta_endpoint = st.sidebar.text_input(
|
104 |
+
# f"Text Analytics endpoint",
|
105 |
+
# value=os.getenv("TA_ENDPOINT", default=""),
|
106 |
+
# help="For more info: https://learn.microsoft.com/en-us/azure/cognitive-services/language-service/personally-identifiable-information/overview", # noqa: E501
|
107 |
+
# )
|
108 |
+
|
109 |
+
|
110 |
+
# st.sidebar.warning("Note: Models might take some time to download. ")
|
111 |
+
|
112 |
+
analyzer_params = (st_model_package, st_model, st_ta_key, st_ta_endpoint)
|
113 |
+
logger.debug(f"analyzer_params: {analyzer_params}")
|
114 |
+
|
115 |
+
st_operator = st.sidebar.selectbox(
|
116 |
+
"De-identification approach",
|
117 |
+
["redact", "replace", "highlight"],
|
118 |
+
index=2,
|
119 |
+
help="""
|
120 |
+
Select which manipulation to the text is requested after PII has been identified.\n
|
121 |
+
- Redact: Completely remove the PII text\n
|
122 |
+
- Replace: Replace the PII text with a constant, e.g. <PERSON>\n
|
123 |
+
- Highlight: Shows the original text with PII highlighted in colors\n
|
124 |
+
""",
|
125 |
+
)
|
126 |
+
st_mask_char = "*"
|
127 |
+
st_number_of_chars = 15
|
128 |
+
st_encrypt_key = "WmZq4t7w!z%C&F)J"
|
129 |
+
|
130 |
+
open_ai_params = None
|
131 |
+
|
132 |
+
logger.debug(f"st_operator: {st_operator}")
|
133 |
+
|
134 |
+
# if st_operator == "mask":
|
135 |
+
# st_number_of_chars = st.sidebar.number_input(
|
136 |
+
# "number of chars", value=st_number_of_chars, min_value=0, max_value=100
|
137 |
+
# )
|
138 |
+
# st_mask_char = st.sidebar.text_input(
|
139 |
+
# "Mask character", value=st_mask_char, max_chars=1
|
140 |
+
# )
|
141 |
+
# elif st_operator == "encrypt":
|
142 |
+
# st_encrypt_key = st.sidebar.text_input("AES key", value=st_encrypt_key)
|
143 |
+
# elif st_operator == "synthesize":
|
144 |
+
# if os.getenv("OPENAI_TYPE", default="openai") == "Azure":
|
145 |
+
# openai_api_type = "azure"
|
146 |
+
# st_openai_api_base = st.sidebar.text_input(
|
147 |
+
# "Azure OpenAI base URL",
|
148 |
+
# value=os.getenv("AZURE_OPENAI_ENDPOINT", default=""),
|
149 |
+
# )
|
150 |
+
# st_deployment_name = st.sidebar.text_input(
|
151 |
+
# "Deployment name", value=os.getenv("AZURE_OPENAI_DEPLOYMENT", default="")
|
152 |
+
# )
|
153 |
+
# st_openai_version = st.sidebar.text_input(
|
154 |
+
# "OpenAI version",
|
155 |
+
# value=os.getenv("OPENAI_API_VERSION", default="2023-05-15"),
|
156 |
+
# )
|
157 |
+
# else:
|
158 |
+
# st_openai_version = openai_api_type = st_openai_api_base = None
|
159 |
+
# st_deployment_name = ""
|
160 |
+
# st_openai_key = st.sidebar.text_input(
|
161 |
+
# "OPENAI_KEY",
|
162 |
+
# value=os.getenv("OPENAI_KEY", default=""),
|
163 |
+
# help="See https://help.openai.com/en/articles/4936850-where-do-i-find-my-secret-api-key for more info.",
|
164 |
+
# type="password",
|
165 |
+
# )
|
166 |
+
# st_openai_model = st.sidebar.text_input(
|
167 |
+
# "OpenAI model for text synthesis",
|
168 |
+
# value=os.getenv("OPENAI_MODEL", default="text-davinci-003"),
|
169 |
+
# help="See more here: https://platform.openai.com/docs/models/",
|
170 |
+
# )
|
171 |
+
#
|
172 |
+
# open_ai_params = OpenAIParams(
|
173 |
+
# openai_key=st_openai_key,
|
174 |
+
# model=st_openai_model,
|
175 |
+
# api_base=st_openai_api_base,
|
176 |
+
# deployment_name=st_deployment_name,
|
177 |
+
# api_version=st_openai_version,
|
178 |
+
# api_type=openai_api_type,
|
179 |
+
# )
|
180 |
+
|
181 |
+
# st_threshold = st.sidebar.slider(
|
182 |
+
# label="Acceptance threshold",
|
183 |
+
# min_value=0.0,
|
184 |
+
# max_value=1.0,
|
185 |
+
# value=0.35,
|
186 |
+
# help="Define the threshold for accepting a detection as PII. See more here: ",
|
187 |
+
# )
|
188 |
+
st_threshold = 0.35
|
189 |
+
#
|
190 |
+
# st_return_decision_process = st.sidebar.checkbox(
|
191 |
+
# "Add analysis explanations to findings",
|
192 |
+
# value=False,
|
193 |
+
# help="Add the decision process to the output table. "
|
194 |
+
# "More information can be found here: https://microsoft.github.io/presidio/analyzer/decision_process/",
|
195 |
+
# )
|
196 |
+
st_return_decision_process = False
|
197 |
+
|
198 |
+
# # Allow and deny lists
|
199 |
+
# st_deny_allow_expander = st.sidebar.expander(
|
200 |
+
# "Allowlists and denylists",
|
201 |
+
# expanded=False,
|
202 |
+
# )
|
203 |
+
#
|
204 |
+
# with st_deny_allow_expander:
|
205 |
+
# st_allow_list = st_tags(
|
206 |
+
# label="Add words to the allowlist", text="Enter word and press enter."
|
207 |
+
# )
|
208 |
+
# st.caption(
|
209 |
+
# "Allowlists contain words that are not considered PII, but are detected as such."
|
210 |
+
# )
|
211 |
+
#
|
212 |
+
# st_deny_list = st_tags(
|
213 |
+
# label="Add words to the denylist", text="Enter word and press enter."
|
214 |
+
# )
|
215 |
+
# st.caption(
|
216 |
+
# "Denylists contain words that are considered PII, but are not detected as such."
|
217 |
+
# )
|
218 |
+
st_allow_list = []
|
219 |
+
st_deny_list = []
|
220 |
+
# Main panel
|
221 |
+
|
222 |
+
with st.expander("About Microsoft Presidio", expanded=False):
|
223 |
+
st.info(
|
224 |
+
"""Presidio is an open source customizable framework for PII detection and de-identification."""
|
225 |
+
)
|
226 |
+
|
227 |
+
analyzer_load_state = st.info("Starting Presidio analyzer...")
|
228 |
+
|
229 |
+
analyzer_load_state.empty()
|
230 |
+
|
231 |
+
# Read default text
|
232 |
+
with open("en_demo_text.txt") as f:
|
233 |
+
en_demo_text = f.readlines()
|
234 |
+
with open("fr_demo_text.txt") as f:
|
235 |
+
fr_demo_text = f.readlines()
|
236 |
+
|
237 |
+
if lang == 'en': demo_text = en_demo_text
|
238 |
+
elif lang == 'fr': demo_text = fr_demo_text
|
239 |
+
|
240 |
+
# Create two columns for before and after
|
241 |
+
col1, col2 = st.columns(2)
|
242 |
+
|
243 |
+
# Before:
|
244 |
+
col1.subheader("Input")
|
245 |
+
st_text = col1.text_area(
|
246 |
+
label="Enter text", value="".join(demo_text), height=400, key="text_input"
|
247 |
+
)
|
248 |
+
|
249 |
+
try:
|
250 |
+
# Choose entities
|
251 |
+
st_entities_expander = st.sidebar.expander("Choose entities to look for")
|
252 |
+
st_entities = st_entities_expander.multiselect(
|
253 |
+
label="Which entities to look for?",
|
254 |
+
options=get_supported_entities(*analyzer_params),
|
255 |
+
default=list(get_supported_entities(*analyzer_params)),
|
256 |
+
help="Limit the list of PII entities detected. "
|
257 |
+
"This list is dynamic and based on the NER model and registered recognizers. "
|
258 |
+
"More information can be found here: https://microsoft.github.io/presidio/analyzer/adding_recognizers/",
|
259 |
+
)
|
260 |
+
|
261 |
+
# Before
|
262 |
+
analyzer_load_state = st.info("Starting Presidio analyzer...")
|
263 |
+
analyzer = analyzer_engine(*analyzer_params)
|
264 |
+
analyzer_load_state.empty()
|
265 |
+
|
266 |
+
st_analyze_results = analyze(
|
267 |
+
*analyzer_params,
|
268 |
+
text=st_text,
|
269 |
+
entities=st_entities,
|
270 |
+
language=lang,
|
271 |
+
score_threshold=st_threshold,
|
272 |
+
return_decision_process=st_return_decision_process,
|
273 |
+
allow_list=st_allow_list,
|
274 |
+
deny_list=st_deny_list,
|
275 |
+
)
|
276 |
+
|
277 |
+
# After
|
278 |
+
if st_operator not in ("highlight", "synthesize"):
|
279 |
+
with col2:
|
280 |
+
st.subheader(f"Output")
|
281 |
+
st_anonymize_results = anonymize(
|
282 |
+
text=st_text,
|
283 |
+
operator=st_operator,
|
284 |
+
mask_char=st_mask_char,
|
285 |
+
number_of_chars=st_number_of_chars,
|
286 |
+
encrypt_key=st_encrypt_key,
|
287 |
+
analyze_results=st_analyze_results,
|
288 |
+
)
|
289 |
+
st.text_area(
|
290 |
+
label="De-identified", value=st_anonymize_results.text, height=400
|
291 |
+
)
|
292 |
+
# elif st_operator == "synthesize":
|
293 |
+
# with col2:
|
294 |
+
# st.subheader(f"OpenAI Generated output")
|
295 |
+
# fake_data = create_fake_data(
|
296 |
+
# st_text,
|
297 |
+
# st_analyze_results,
|
298 |
+
# open_ai_params,
|
299 |
+
# )
|
300 |
+
# st.text_area(label="Synthetic data", value=fake_data, height=400)
|
301 |
+
else:
|
302 |
+
st.subheader("Highlighted")
|
303 |
+
annotated_tokens = annotate(text=st_text, analyze_results=st_analyze_results)
|
304 |
+
# annotated_tokens
|
305 |
+
annotated_text(*annotated_tokens)
|
306 |
+
|
307 |
+
# table result
|
308 |
+
st.subheader(
|
309 |
+
"Findings"
|
310 |
+
if not st_return_decision_process
|
311 |
+
else "Findings with decision factors"
|
312 |
+
)
|
313 |
+
if st_analyze_results:
|
314 |
+
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
|
315 |
+
df["text"] = [st_text[res.start : res.end] for res in st_analyze_results]
|
316 |
+
|
317 |
+
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
|
318 |
+
{
|
319 |
+
"entity_type": "Entity type",
|
320 |
+
"text": "Text",
|
321 |
+
"start": "Start",
|
322 |
+
"end": "End",
|
323 |
+
"score": "Confidence",
|
324 |
+
},
|
325 |
+
axis=1,
|
326 |
+
)
|
327 |
+
df_subset["Text"] = [st_text[res.start : res.end] for res in st_analyze_results]
|
328 |
+
if st_return_decision_process:
|
329 |
+
analysis_explanation_df = pd.DataFrame.from_records(
|
330 |
+
[r.analysis_explanation.to_dict() for r in st_analyze_results]
|
331 |
+
)
|
332 |
+
df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1)
|
333 |
+
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True)
|
334 |
+
else:
|
335 |
+
st.text("No findings")
|
336 |
+
|
337 |
+
except Exception as e:
|
338 |
+
print(e)
|
339 |
+
traceback.print_exc()
|
340 |
+
st.error(e)
|
341 |
+
|
342 |
+
components.html(
|
343 |
+
"""
|
344 |
+
<script type="text/javascript">
|
345 |
+
(function(c,l,a,r,i,t,y){
|
346 |
+
c[a]=c[a]||function(){(c[a].q=c[a].q||[]).push(arguments)};
|
347 |
+
t=l.createElement(r);t.async=1;t.src="https://www.clarity.ms/tag/"+i;
|
348 |
+
y=l.getElementsByTagName(r)[0];y.parentNode.insertBefore(t,y);
|
349 |
+
})(window, document, "clarity", "script", "h7f8bp42n8");
|
350 |
+
</script>
|
351 |
+
"""
|
352 |
+
)
|
recognizers.yaml
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
recognizers:
|
2 |
+
-
|
3 |
+
name: "FRENCH_NID"
|
4 |
+
supported_language: "fr"
|
5 |
+
patterns:
|
6 |
+
-
|
7 |
+
name: "FRENCH_NID"
|
8 |
+
regex: "[0-9]{12}|([A-Z]|[0-9]){9}"
|
9 |
+
score: 0.5
|
10 |
+
context:
|
11 |
+
- national
|
12 |
+
supported_entity: "FRENCH_NID"
|
13 |
+
-
|
14 |
+
name: "FRENCH_NID"
|
15 |
+
supported_language: "en"
|
16 |
+
patterns:
|
17 |
+
-
|
18 |
+
name: "FRENCH_NID"
|
19 |
+
regex: "[0-9]{12}|([A-Z]|[0-9]){9}"
|
20 |
+
score: 0.5
|
21 |
+
context:
|
22 |
+
- national
|
23 |
+
supported_entity: "FRENCH_NID"
|
24 |
+
-
|
25 |
+
name: "FRENCH_PASS"
|
26 |
+
supported_language: "fr"
|
27 |
+
patterns:
|
28 |
+
-
|
29 |
+
name: "FRENCH_PASS"
|
30 |
+
regex: "[0-9]{2}([a-z]|[A-Z]){2}[0-9]{5}"
|
31 |
+
score: 0.5
|
32 |
+
context:
|
33 |
+
- passeport
|
34 |
+
supported_entity: "FRENCH_PASS"
|
35 |
+
-
|
36 |
+
name: "FRENCH_PASS"
|
37 |
+
supported_language: "en"
|
38 |
+
patterns:
|
39 |
+
-
|
40 |
+
name: "FRENCH_PASS"
|
41 |
+
regex: "[0-9]{2}([a-z]|[A-Z]){2}[0-9]{5}"
|
42 |
+
score: 0.5
|
43 |
+
context:
|
44 |
+
- passport
|
45 |
+
supported_entity: "FRENCH_PASS"
|
46 |
+
-
|
47 |
+
name: "FRENCH_SSN"
|
48 |
+
supported_language: "fr"
|
49 |
+
patterns:
|
50 |
+
-
|
51 |
+
name: "FRENCH_SSN"
|
52 |
+
regex: "[0-9]{15}"
|
53 |
+
score: 0.5
|
54 |
+
context:
|
55 |
+
- sécurité sociale
|
56 |
+
- social
|
57 |
+
supported_entity: "FRENCH_SSN"
|
58 |
+
-
|
59 |
+
name: "FRENCH_SSN"
|
60 |
+
supported_language: "en"
|
61 |
+
patterns:
|
62 |
+
-
|
63 |
+
name: "FRENCH_SSN"
|
64 |
+
regex: "[0-9]{15}"
|
65 |
+
score: 0.5
|
66 |
+
context:
|
67 |
+
- social security
|
68 |
+
- social
|
69 |
+
supported_entity: "FRENCH_SSN"
|
70 |
+
# -
|
71 |
+
# name: "CREDIT_CARD"
|
72 |
+
# supported_language: "fr"
|
73 |
+
# context:
|
74 |
+
# - crédit
|
75 |
+
# - carte
|
76 |
+
# - carte de crédit
|
77 |
+
# supported_entity: "CREDIT_CARD"
|
78 |
+
# deny_list:
|
79 |
+
# - carte
|
80 |
+
# -
|
81 |
+
# name: "DATE_TIME"
|
82 |
+
# supported_language: "fr"
|
83 |
+
# context:
|
84 |
+
# - mois
|
85 |
+
# - date
|
86 |
+
# - jour
|
87 |
+
# - année
|
88 |
+
# supported_entity: "DATE_TIME"
|
89 |
+
# deny_list:
|
90 |
+
# - mois
|
91 |
+
# -
|
92 |
+
# name: "PHONE_NUMBER"
|
93 |
+
# supported_language: "fr"
|
94 |
+
# context:
|
95 |
+
# - téléphone
|
96 |
+
# supported_entity: "PHONE_NUMBER"
|
97 |
+
# deny_list:
|
98 |
+
# - téléphone
|
99 |
+
|
100 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
presidio-analyzer
|
2 |
+
presidio-anonymizer
|
3 |
+
streamlit
|
4 |
+
streamlit-tags
|
5 |
+
pandas
|
6 |
+
python-dotenv
|
7 |
+
st-annotated-text
|
8 |
+
torch
|
9 |
+
transformers
|
10 |
+
flair
|
11 |
+
openai
|
12 |
+
spacy
|
13 |
+
azure-ai-textanalytics
|