Spaces:
Running
Running
File size: 2,513 Bytes
1e4d453 b0c5c57 1e4d453 b0c5c57 1e4d453 8a23f94 b0c5c57 1e4d453 b0c5c57 1e4d453 8a23f94 b0c5c57 8a23f94 b0c5c57 8a23f94 b0c5c57 8a23f94 b0c5c57 8a23f94 b0c5c57 1e4d453 b0c5c57 1e4d453 b0c5c57 1e4d453 b0c5c57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import cv2
import torch
import numpy as np
import gradio as gr
import paddlehub as hub
from PIL import Image
from methods.img2pixl import pixL
from examples.pixelArt.combine import combine
model = hub.Module(name='U2Net')
device = "cuda" if torch.cuda.is_available() else "cpu"
face2paint = torch.hub.load("bryandlee/animegan2-pytorch:main", "face2paint", device=device, size=512)
model = torch.hub.load("bryandlee/animegan2-pytorch", "generator", device=device).eval()
def GIF(fname,pixel_size):
gif = Image.open(fname)
frames = []
for i in range(gif.n_frames): #First Step: Splitting the GIF into frames
gif.seek(i)
frame = Image.new('RGB', gif.size)
frame.paste(gif)
frame = np.array(frame)
frames.append(frame)
result = pixL().toThePixL(frames, pixel_size)
for frame in result: #Second Step: Adding Cartoon Effect to each frame
frame = Image.fromarray(frame)
frame = cv2.cvtColor(np.asarray(face2paint(model, frame)), cv2.COLOR_BGR2RGB)
frames = []
for frame in result: #Third Step: Combining the frames into a GIF
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
frames.append(frame)
frames[0].save('cache.gif', append_images=frames, save_all=True, loop=1)
cache = Image.open('cache.gif')
return cache
def initilize(image,pixel_size,checkbox1):
if image.name.endswith('.gif'):
GIF(image.name,pixel_size)
else:
image = Image.open(image.name).convert("RGB")
image = cv2.cvtColor(np.asarray(face2paint(model, image)), cv2.COLOR_BGR2RGB)
if checkbox1:
result = model.Segmentation(
images=[image],
paths=None,
batch_size=1,
input_size=320,
output_dir='output',
visualization=True)
result = combine.combiner(images = pixL().toThePixL([result[0]['front'][:,:,::-1], result[0]['mask']],
pixel_size),
background_image = image)
else:
result = pixL().toThePixL([image], pixel_size)
return Image.fromarray(result)
inputs = ["file",
gr.Slider(4, 100, value=12, step = 2, label="Pixel Size"),
gr.Checkbox(label="Object-Oriented Inference", value=False)]
outputs = [gr.Image(type="pil",label="Front")]
gr.Interface(fn = initilize,
inputs = inputs,
outputs = outputs).launch() |