import numpy as np import cv2 import gradio as gr PCA_MODEL_PATH = "pca_texture_model.npy" COMPONENT_NAMES_PATH = "component_names.txt" # Load PCA model pca = np.load(PCA_MODEL_PATH, allow_pickle=True).item() mean_texture = pca.mean_ components = pca.components_ explained_variance = pca.explained_variance_ n_components = components.shape[0] TEXTURE_SIZE = int(np.sqrt(mean_texture.shape[0] // 3)) # Calculate slider ranges slider_ranges = [3 * np.sqrt(var) for var in explained_variance] # Load component names if available try: with open(COMPONENT_NAMES_PATH, "r") as f: component_names = [f"Component {i+1} ({line.strip()})" if line.strip() else f"Component {i+1}" for i, line in enumerate(f.readlines())] if len(component_names) < n_components: component_names += [f"Component {i+1}" for i in range(len(component_names), n_components)] except FileNotFoundError: component_names = [f"Component {i+1}" for i in range(n_components)] def generate_texture(*component_values): component_values = np.array(component_values) new_texture = mean_texture + np.dot(component_values, components) new_texture = np.clip(new_texture, 0, 255).astype(np.uint8) new_texture = new_texture.reshape((TEXTURE_SIZE, TEXTURE_SIZE, 3)) new_texture = cv2.cvtColor(new_texture, cv2.COLOR_BGR2RGB) return new_texture def randomize_texture(): sampled_coefficients = np.random.normal(0, np.sqrt(explained_variance), size=n_components) return sampled_coefficients.tolist() def update_texture(*component_values): texture = generate_texture(*component_values) return texture def on_random_click(): random_values = randomize_texture() texture = generate_texture(*random_values) updates = [gr.update(value=value) for value in random_values] updates.append(texture) return updates def process_uploaded_image(uploaded_image): resized_image = cv2.resize(uploaded_image, (TEXTURE_SIZE, TEXTURE_SIZE)) resized_image = cv2.cvtColor(resized_image, cv2.COLOR_RGB2BGR) flattened_image = resized_image.flatten() centered_image = flattened_image - mean_texture coefficients = np.dot(centered_image, components.T) clipped_coefficients = [np.clip(coeff, -slider_ranges[i], slider_ranges[i]) for i, coeff in enumerate(coefficients)] return clipped_coefficients def on_image_upload(image): coefficients = process_uploaded_image(image) updates = [gr.update(value=value) for value in coefficients] return updates def on_update_click(*component_values): texture = generate_texture(*component_values) return texture # Create Gradio interface with gr.Blocks() as demo: with gr.Row(): with gr.Column(): sliders = [] for i in range(n_components): range_limit = slider_ranges[i] slider = gr.Slider( minimum=-range_limit, maximum=range_limit, step=10, value=0, label=component_names[i] ) sliders.append(slider) with gr.Column(): output_image = gr.Image( label="Generated Texture" ) upload_image = gr.Image( label="Upload Image", sources=['upload', 'clipboard'], type="numpy" ) update_texture_button = gr.Button("Update Texture") random_button = gr.Button("Randomize Texture") get_components_button = gr.Button("Get Components from Image") # Update texture when clicking the "Update Texture" button update_texture_button.click( fn=on_update_click, inputs=sliders, outputs=output_image ) # Randomize texture and update sliders and image random_button.click( fn=on_random_click, inputs=None, outputs=[*sliders, output_image] ) # Update sliders based on the uploaded image when clicking "Get Components from Image" get_components_button.click( fn=on_image_upload, inputs=upload_image, outputs=sliders ) # Keep the uploaded image for reference (no update on texture yet) upload_image.change( fn=None, inputs=None, outputs=[] ) demo.launch()