Spaces:
Sleeping
Sleeping
File size: 11,061 Bytes
efa9b10 e798441 68bf5c0 56f5312 d7d88a6 738c47d efa9b10 def0304 f02448c efa9b10 783a6b1 d7d88a6 5438143 d7d88a6 1188f75 d7d88a6 01936b7 d7d88a6 783a6b1 efa9b10 d9f31af efa9b10 3b26dac 8af7a53 3b26dac 7cb2e91 7fa6d71 7cb2e91 efa9b10 7cb2e91 cc4d71b b901c76 6fdd23e efa9b10 0ec483d 16f3b53 def0304 7ca5761 def0304 efa9b10 b901c76 7d614a6 3b26dac 6fdd23e 2b6d359 019928f f0ce94d f02448c 11711e5 435b599 2b6d359 56f5312 019928f f0ce94d 56f5312 3b26dac 56f5312 da4b039 56f5312 3b26dac 56f5312 738c47d b901c76 738c47d 5438143 738c47d ef82d84 4c4cf13 738c47d efa9b10 3b26dac efa9b10 783a6b1 d7d88a6 783a6b1 738c47d 7cb2e91 7854dd4 1b0a7da 738c47d 56f5312 019928f 56f5312 7cc65b4 56f5312 0ce495e 56f5312 83736e3 738c47d 418d1f5 9007f52 4c4cf13 738c47d 56f5312 da4b039 56f5312 f02448c efa9b10 724556d efa9b10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import gradio as gr
from scrape_3gpp import *
from excel_chat import *
from classification import *
from chart_generation import *
from charts_advanced import *
from users_management import *
from code_df_custom import *
# Categories
categories = [
{
"topic": "Confidentiality and Privacy Protection",
"description": "This topic covers the protection of confidentiality, privacy, and integrity in security systems. It also includes authentication and authorization processes.",
"experts": ["Mireille"]
},
{
"topic": "Distributed Trust and End-User Trust Models",
"description": "This topic focuses on distributed trust models and how end-users establish trust in secure systems.",
"experts": ["Mireille", "Khawla"]
},
{
"topic": "Secure Element and Key Provisioning",
"description": "This topic involves the secure element in systems and the process of key provisioning.",
"experts": ["Mireille"]
},
{
"topic": "Residential Gateway Security",
"description": "This topic covers the security aspects of Residential Gateways.",
"experts": ["Mireille"]
},
{
"topic": "Standalone Non-Public Network (SNPN) Inter-Connection and Cybersecurity",
"description": "This topic focuses on the inter-connection of Standalone Non-Public Networks and related cyber-security topics.",
"experts": ["Khawla"]
},
{
"topic": "Distributed Ledger and Blockchain in SNPN",
"description": "This topic covers the use of distributed ledger technology and blockchain in securing Standalone Non-Public Networks.",
"experts": ["Khawla"]
},
{
"topic": "Distributed Networks and Communication",
"description": "This topic involves distributed networks such as mesh networks, ad-hoc networks, and multi-hop networks, and their cyber-security aspects.",
"experts": ["Guillaume"]
},
{
"topic": "Swarm of Drones and Unmanned Aerial Vehicles Network Infrastructure",
"description": "This topic covers the network infrastructure deployed by Swarm of Drones and Unmanned Aerial Vehicles.",
"experts": ["Guillaume"]
},
{
"topic": "USIM and Over-the-Air Services",
"description": "This topic involves USIM and related over-the-air services such as Steering of Roaming, roaming services, network selection, and UE configuration.",
"experts": ["Vincent"]
},
{
"topic": "Eco-Design and Societal Impact of Technology",
"description": "This topic covers eco-design concepts, including energy saving, energy efficiency, carbon emissions, and the societal impact of technology.",
"experts": ["Pierre"]
},
{
"topic": "Service Requirements of New Services",
"description": "This topic involves defining service requirements for new services, detecting low signals of new trends and technologies, and assessing their impact on USIM services or over-the-air services.",
"experts": ["Ly-Thanh"]
},
{
"topic": "Satellite and Non Terrestrial Networks",
"description": "This topic covers satellite networks, Non Terrestrial Networks, Private Networks, IoT, Inter Satellite communication, and Radio Access Network.",
"experts": ["Nicolas"]
},
{
"topic": "Public Safety and Emergency Communication",
"description": "This topic involves Public Safety Communication, Military Communication, Emergency Calls, Emergency Services, Disaster Communication Access, and other related areas.",
"experts": ["Dorin"]
}
]
df_cate = pd.DataFrame(categories)
# def update_label(label1):
# return gr.update(choices=list(df.columns))
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown("## Extraction, Classification and AI tool")
with gr.Column():
md_username = gr.Markdown(value='## Hi Guest!')
btn_logout = gr.Button("Logout")
with gr.Accordion(label="**Login** to keep user preferences", open=False):
st_user = gr.State(value={"name":"Guest", "hashed_password":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855", "history": { "keywords": [ "value1", "value3", "value4"], "prompts": [] }})
with gr.Column():
tb_user = gr.Textbox(label='Username')
tb_pwd = gr.Textbox(label='Password', type='password')
with gr.Row():
btn_login = gr.Button('Login')
with gr.Tab("File extraction"):
gr.Markdown("### This part aims to extract the most relevant content and information about every contribution from a 3gpp meeting")
gr.Markdown(" Put either just a link, or a link and an excel file with an 'Actions' column")
with gr.Row():
dd_url = gr.Dropdown(label="(e.g. https://www.3gpp.org/ftp/TSG_SA/WG1_Serv/TSGS1_105_Athens/Docs)", multiselect=False, value="https://www.3gpp.org/ftp/", allow_custom_value=True, scale=9)
btn_search = gr.Button("Search")
with gr.Accordion("Filter by file status", open=False):
with gr.Row():
dd_status = gr.Dropdown(label="Status to look for (Optional)", allow_custom_value=False, multiselect=True, scale=7)
btn_search_status = gr.Button("Search for status", scale=2)
btn_extract = gr.Button("Extract excel from URL")
with gr.Tab("Ask LLM"):
gr.Markdown("### This section utilizes Large Language Models (LLMs) to query rows in an Excel file")
dd_source_ask = gr.Dropdown(label="Source Column(s)", multiselect=True)
tb_destcol = gr.Textbox(label="Destination column label (e.g. Summary, ELI5, PAB)")
dd_prompt = gr.Dropdown(label="Prompt", allow_custom_value=True, multiselect=True, max_choices=1)
dd_llm = gr.Dropdown(["Mistral Tiny","Mistral Small","Mistral Medium", "Claude Sonnet", "Claude Opus", "Groq (mixtral)"],value="Groq (mixtral)", label="Choose your LLM")
with gr.Accordion("Filters", open=False):
with gr.Row():
dd_searchcol = gr.Dropdown(label="Column to look into (Optional)", value='[ALL]', multiselect=False, scale=4)
dd_keywords = gr.Dropdown(label="Words to look for (Optional)", multiselect=True, allow_custom_value=True, scale=5)
mist_button = gr.Button("Ask AI")
with gr.Tab("Classification by topic"):
gr.Markdown("### This section will categories each contribution in your own personalized categories")
with gr.Row():
dd_source_class = gr.Dropdown(label="Source Column", multiselect=False, scale=7)
sl_treshold = gr.Slider(minimum=0, maximum=1, value=0.45, step=0.05, label='Similarity Treshold')
gr.Markdown("### The predefined categories can be modified at any time")
df_category = gr.DataFrame(label='categories', value=df_cate, interactive=True)
btn_classif = gr.Button("Categorize")
with gr.Tab(" Personalised Charts Generation"):
gr.Markdown("### This section will create a chart using two columns of your choice")
with gr.Row():
dd_label1 = gr.Dropdown(label="Label 1", multiselect=False)
dd_label2 = gr.Dropdown(label="Label 2", value="", multiselect=False)
btn_chart = gr.Button("Generate Bar Plot")
plt_figure = gr.Plot()
with gr.Tab("Meeting Report (charts)"):
gr.Markdown("### This section will create a report using multiple charts with your columns")
gr.Markdown("Make sure you have an 'Expert', 'Source' and 'Status' column")
with gr.Tab("Overall"):
btn_overall = gr.Button("Overall Review")
with gr.Tab("By Expert"):
dd_exp=gr.Dropdown(label="Experts", multiselect=False, allow_custom_value=True,)
btn_expert = gr.Button("Top 10 by expert")
with gr.Tab("By Company"):
tb_com=gr.Textbox(label="Company Name",info="You can write 1, 2 or 3 company names at the same time")
btn_type = gr.Button("Company info")
with gr.Row():
plt_chart = gr.Plot(label="Graphique")
plt_chart2 = gr.Plot(label="Graphique")
plt_chart3 = gr.Plot(label="Graphique")
with gr.Tab("Code on your file"):
gr.Markdown("### This section lets you add your own code to add functions and filters to edit the files")
with gr.Accordion("Input DataFrame Preview", open=False):
df_input = gr.DataFrame(interactive=False)
gr.Markdown("```python\ndf = pd.read_excel(YOUR_FILE)\n```")
cd_code = gr.Code(value="# Create a copy of the original DataFrame\nnew_df = df.copy()\n\n# Add a new column to the copy\nnew_df['NewColumn'] = 'New Value'", language='python')
gr.Markdown("```python\nnew_df.to_excel(YOUR_NEW_FILE)\nreturn YOUR_NEW_FILE\n```")
btn_run_code = gr.Button()
error_display = gr.Markdown()
df_output_code = gr.DataFrame(interactive=False)
btn_export_df = gr.Button('Export df as excel')
st_filename = gr.State()
with gr.Accordion("Excel Preview", open=False):
df_output = gr.DataFrame()
fi_excel = gr.File(label="Excel File")
# authentication
btn_login.click(auth_user, inputs=[tb_user, tb_pwd], outputs=[st_user, md_username, dd_prompt, dd_keywords])
tb_pwd.submit(auth_user, inputs=[tb_user, tb_pwd], outputs=[st_user, md_username, dd_prompt, dd_keywords])
btn_logout.click(logout, inputs=None, outputs=[st_user, md_username, dd_prompt, dd_keywords])
# 3GPP scraping
btn_search_status.click(extract_statuses, inputs=dd_url, outputs=dd_status)
btn_search.click(browse_folder, inputs=dd_url, outputs=dd_url)
dd_url.change(browse_folder, inputs=dd_url, outputs=dd_url)
#fi_excel.change(get_expert,inputs=fi_excel, outputs=dd_exp)
fi_excel.change(get_columns, inputs=[fi_excel], outputs=[dd_source_ask, dd_source_class, dd_label1, dd_label2, dd_searchcol, df_output,st_filename, df_input])
btn_extract.click(extractionPrincipale, inputs=[dd_url, fi_excel, dd_status], outputs=[fi_excel])
mist_button.click(chat_with_mistral, inputs=[dd_source_ask, tb_destcol, dd_prompt, fi_excel, dd_url, dd_searchcol, dd_keywords, dd_llm, st_user], outputs=[fi_excel, df_output, dd_prompt, dd_keywords, st_user])
btn_classif.click(classification, inputs=[dd_source_class, fi_excel, df_category, sl_treshold], outputs=[fi_excel, df_output])
btn_chart.click(create_bar_plot, inputs=[fi_excel, dd_label1, dd_label2], outputs=[plt_figure])
btn_run_code.click(run_code, inputs=[fi_excel, cd_code], outputs=[df_output_code, error_display])
btn_export_df.click(export_df, inputs=[df_output_code, st_filename], outputs=fi_excel)
btn_overall.click(generate_company_chart,inputs=[fi_excel], outputs=[plt_chart])
btn_overall.click(status_chart,inputs=[fi_excel], outputs=[plt_chart2])
btn_overall.click(category_chart,inputs=[fi_excel], outputs=[plt_chart3])
btn_expert.click(chart_by_expert,inputs=[fi_excel,dd_exp], outputs=[plt_chart])
btn_type.click(company_document_type,inputs=[fi_excel,tb_com], outputs=[plt_chart])
# dd_label1.change(update_label, inputs=[dd_label1], outputs=[dd_label2])
demo.launch(debug=True) |