File size: 13,223 Bytes
8cc7d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import pandas as pd
import matplotlib.pyplot as plt
from collections import Counter
import matplotlib.ticker as ticker

def category_chart(file_path):
    plt.close('all')
    # Define expert to specialty mapping
    expert_specialties = {
        "mireille": "Security Trust",
        "khawla": "Network Security",
        "guillaume": "Distributed Networks",
        "vincent": "USIM Management",
        "pierre": "Eco-Design",
        "ly-thanh": "Trend Analysis",
        "nicolas": "Satellite Networks",
        "dorin": "Emergency Communication"
    }

    # Load the Excel file
    data = pd.read_excel(file_path)

    # Assuming experts are listed in a column named 'Experts'
    # This part might need to be adjusted based on the actual structure of your Excel file
    experts = data['Expert'].dropna()

    # Map experts to their specialties
    specialties = experts.apply(lambda expert: expert_specialties.get(expert.strip(), "Other"))

    # Count occurrences
    specialty_counts = specialties.value_counts()

    # Convert to DataFrame for plotting
    specialty_counts_df = specialty_counts.reset_index()
    specialty_counts_df.columns = ['Specialty', 'Count']

    # Plotting
    plt.style.use('dark_background')
    fig, ax = plt.subplots(figsize=(14, 14))
    ax.set_facecolor('#222c52')
    fig.patch.set_facecolor('#222c52')

    # Alternating colors for the bars
    colors = ['#08F7FE' if i % 2 == 0 else '#FE53BB' for i in range(len(specialty_counts_df))]
    specialty_counts_df.plot(kind='bar', x='Specialty', y='Count', ax=ax, color=colors, edgecolor=colors, alpha=0.5, linewidth=5, legend=None)

    # Set chart details
    ax.xaxis.label.set_color('white')
    ax.yaxis.label.set_color('white')
    ax.tick_params(axis='x', colors='white', labelsize=12, direction='out', length=6, width=2, rotation=42)
    ax.tick_params(axis='y', colors='white', labelsize=12, direction='out', length=6, width=2)
    ax.set_title('Most Used Expert Specialties', color='white', fontsize=16)
    ax.set_xlabel('Specialty', fontsize=14)
    ax.set_ylabel('Count', fontsize=14)
    ax.grid(True, which='both', axis='y', color='gray', linestyle='-', linewidth=0.5, alpha=0.5)
    ax.set_axisbelow(True)

    for spine in ax.spines.values():
        spine.set_color('white')
        spine.set_linewidth(2)
    ax.spines['right'].set_visible(False)
    ax.spines['top'].set_visible(False)

    return fig




def status_chart(file_path):
    # Load the Excel file
    plt.close('all')
    data = pd.read_excel(file_path)

    # Calculate the frequency of each status
    status_counts = data['Status'].value_counts()

    # Define colors with 50% opacity
    colors = ['#08F7FE80', '#FE53BB80',
              '#fff236de', '#90ff00bf']  # '80' for 50% opacity

    # Plotting
    fig, ax = plt.subplots()
    fig.patch.set_facecolor('#222c52')  # Set the background color of the figure
    ax.set_facecolor('#222c52')  # Set the background color of the axes
    wedges, texts, autotexts = ax.pie(status_counts, autopct='%1.1f%%', startangle=90, colors=colors,
                                      wedgeprops=dict(edgecolor='white', linewidth=1.5))

    # Set legend
    ax.legend(wedges, status_counts.index, title="Document Status", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1))

    ax.set_ylabel('')  # Remove the y-label
    ax.set_title('Document Status Distribution', color='white')

    plt.setp(autotexts, size=8, weight="bold", color="white")

    return fig



def plot_glowing_line_with_dots_enhanced(ax, x, y, color, label, glow_size=10, base_linewidth=3, markersize=8):
    for i in range(1, glow_size + 1):
        alpha_value = (1.0 / glow_size) * (i / (glow_size / 2))
        if alpha_value > 1.0:
            alpha_value = 1.0
        linewidth = base_linewidth * i * 0.5
        ax.plot(x, y, color=color, linewidth=linewidth, alpha=alpha_value * 0.1)
    ax.plot(x, y, color=color, linewidth=base_linewidth, marker='o', linestyle='-', label=label, markersize=markersize)

def company_document_type(file_path, company_names):
    plt.close('all')
    # Convert company_names to a list if it's a string
    if isinstance(company_names, str):
        company_names = [name.strip() for name in company_names.split(',')]  # Ensure it's a list even for single company name

    df = pd.read_excel(file_path)
    plt.style.use('dark_background')
    fig, ax = plt.subplots(figsize=(14, 8))
    ax.set_facecolor('#222c52')
    fig.patch.set_facecolor('#222c52')

    colors = ['#08F7FE', '#FE53BB', '#fff236']  # Assign more colors for more companies

    max_count = 0
    for index, company_name in enumerate(company_names):
        df_company = df[df['Source'].str.contains(company_name, case=False, na=False)]
        document_counts = df_company['Type'].value_counts()
        all_document_types = df['Type'].unique()
        document_counts = document_counts.reindex(all_document_types, fill_value=0)

        x_data = document_counts.index
        y_data = document_counts.values
        ax.fill_between(x_data, y_data, -0.2, color=colors[index % len(colors)], alpha=0.1)
        plot_glowing_line_with_dots_enhanced(ax, x_data, y_data, colors[index % len(colors)], company_name, base_linewidth=4)

        if max_count < max(y_data):
            max_count = max(y_data)

    ax.set_xticks(range(len(all_document_types)))
    ax.set_xticklabels(all_document_types, rotation=45, fontsize=12, fontweight='bold')
    ax.yaxis.set_major_locator(ticker.MaxNLocator(integer=True))
    ax.set_ylabel('Count', color='white')
    ax.set_title('Document Types Contributed by Companies')
    ax.grid(True, which='both', axis='both', color='gray', linestyle='-', linewidth=0.5, alpha=0.5)
    ax.set_axisbelow(True)

    plt.ylim(-0.2, max_count + 1)

    for spine in ax.spines.values():
        spine.set_color('white')
        spine.set_linewidth(2)

    ax.spines['right'].set_visible(False)
    ax.spines['top'].set_visible(False)
    ax.spines['left'].set_position(('data', 0))
    plt.legend(facecolor='#222c52', edgecolor='white', fontsize=12)

    return fig



def chart_by_expert(file_path, expert_name):
    plt.close('all')
    # Load the Excel file
    data = pd.read_excel(file_path)
    
    parts = expert_name.split('/')

# The name would be the second part, trim spaces
    name = parts[1].strip()
    # Filter data for the specified expert
    filtered_data = data[data['Expert'] == name.lower()]

    # Define merge entities mapping
    merge_entities = {
        "Nokia Shanghai Bell": "Nokia",
        "Qualcomm Korea": "Qualcomm",
        "Qualcomm Incorporated": "Qualcomm",
        "Huawei Technologies R&D UK": "Huawei",
        "Hughes Network Systems": "Hughes",
        "HUGHES Network Systems": "Hughes",
        "Hughes Network systems": "Hughes",
        "HUGHES Network Systems Ltd": "Hughes",
        "KT Corp.": "KT Corporation",
        "LG Electronics Inc.": "LG Electronics",
        "LG Uplus": "LG Electronics",
        "OPPO (chongqing) Intelligence": "OPPO",
        "Samsung Electronics GmbH": "Samsung",
        "China Mobile International Ltd": "China Mobile",
        "NOVAMINT": "Novamint",
        "Eutelsat": "Eutelsat Group",
        "Inmarsat Viasat": "Inmarsat",
        "China Telecommunications": "China Telecom",
        "SES S.A.": "SES",
        "Ericsson GmbH": "Ericsson",
        "JSAT": "SKY Perfect JSAT",
        "NEC Europe Ltd": "NEC",
        "Fraunhofer IIS": "Fraunhofer",
        "Hugues Network Systems": "Hughes"
    }

    # Normalize company names within each cell
    def normalize_companies(company_list, merge_entities):
        normalized = set()  # Use a set to avoid duplicates within the same cell
        for company in company_list:
            normalized_name = merge_entities.get(company.strip(), company.strip())
            normalized.add(normalized_name)
        return list(normalized)

    # Prepare the filtered data
    sources = filtered_data['Source'].dropna()
    split_sources = sources.apply(lambda x: normalize_companies(x.split(', '), merge_entities))

    # Flatten the list of lists while applying the merge rules
    all_sources = [company for sublist in split_sources for company in sublist]

    # Count occurrences
    source_counts = Counter(all_sources)
    top_10_sources = source_counts.most_common(10)

    # Convert to DataFrame for plotting
    top_10_df = pd.DataFrame(top_10_sources, columns=['Company', 'Count'])

    # Plotting
    plt.style.use('dark_background')
    fig, ax = plt.subplots(figsize=(14, 11))
    ax.set_facecolor('#222c52')
    fig.patch.set_facecolor('#222c52')

    # Alternating colors for the bars
    colors = ['#08F7FE' if i % 2 == 0 else '#FE53BB' for i in range(len(top_10_df))]
    top_10_df.plot(kind='bar', x='Company', y='Count', ax=ax, color=colors, edgecolor=colors, alpha=0.5, linewidth=5)

    # Set chart details
    ax.xaxis.label.set_color('white')
    ax.yaxis.label.set_color('white')
    ax.tick_params(axis='x', colors='white', labelsize=12, direction='out', length=6, width=2, rotation=45)
    ax.tick_params(axis='y', colors='white', labelsize=12, direction='out', length=6, width=2)
    ax.set_title(f"Top 10 Cotributors for Expert '{expert_name}'", color='white', fontsize=16)
    ax.set_xlabel('Company', fontsize=14)
    ax.set_ylabel('Count', fontsize=14)
    ax.yaxis.set_major_locator(ticker.MaxNLocator(integer=True))
    ax.grid(True, which='both', axis='y', color='gray', linestyle='-', linewidth=0.5, alpha=0.5)
    ax.set_axisbelow(True)

    for spine in ax.spines.values():
        spine.set_color('white')
        spine.set_linewidth(2)
    ax.spines['right'].set_visible(False)
    ax.spines['top'].set_visible(False)

    return fig



# @title Top 10 des entreprises en termes de publications



def generate_company_chart(file_path):
    # plt.close('all')
    # Define merge entities mapping
    merge_entities = {
        "Nokia Shanghai Bell": "Nokia",
        "Qualcomm Korea": "Qualcomm",
        "Qualcomm Incorporated": "Qualcomm",
        "Huawei Technologies R&D UK": "Huawei",
        "Hughes Network Systems": "Hughes",
        "HUGHES Network Systems": "Hughes",
        "Hughes Network systems": "Hughes",
        "HUGHES Network Systems Ltd": "Hughes",
        "KT Corp.": "KT Corporation",
        "Deutsche Telekom AG": "Deutsche Telekom",
        "LG Electronics Inc.": "LG Electronics",
        "LG Uplus": "LG Electronics",
        "OPPO (chongqing) Intelligence": "OPPO",
        "Samsung Electronics GmbH": "Samsung",
        "China Mobile International Ltd": "China Mobile",
        "NOVAMINT": "Novamint",
        "Eutelsat": "Eutelsat Group",
        "Inmarsat Viasat": "Inmarsat",
        "China Telecommunications": "China Telecom",
        "SES S.A.": "SES",
        "Ericsson GmbH": "Ericsson",
        "JSAT": "SKY Perfect JSAT",
        "NEC Europe Ltd": "NEC",
        "Fraunhofer IIS": "Fraunhofer",
        "Hugues Network Systems": "Hughes"
    }

    # Function to normalize company names within each cell
    def normalize_companies(company_list, merge_entities):
        normalized = set()  # Use a set to avoid duplicates within the same cell
        for company in company_list:
            normalized_name = merge_entities.get(company.strip(), company.strip())
            normalized.add(normalized_name)
        return list(normalized)

    # Load the Excel file
    data = pd.read_excel(file_path)

    # Prepare the data
    sources = data['Source'].dropna()
    split_sources = sources.apply(lambda x: normalize_companies(x.split(', '), merge_entities))

    # Flatten the list of lists while applying the merge rules
    all_sources = [company for sublist in split_sources for company in sublist]

    # Count occurrences
    source_counts = Counter(all_sources)
    top_10_sources = source_counts.most_common(10)

    # Convert to DataFrame for plotting
    top_10_df = pd.DataFrame(top_10_sources, columns=['Company', 'Count'])

    # Plotting
    plt.style.use('dark_background')
    fig, ax = plt.subplots(figsize=(14, 12))
    ax.set_facecolor('#222c52')
    fig.patch.set_facecolor('#222c52')

    # Alternating colors for the bars
    colors = ['#08F7FE' if i % 2 == 0 else '#FE53BB' for i in range(len(top_10_df))]
    top_10_df.plot(kind='bar', x='Company', y='Count', ax=ax, color=colors, edgecolor=colors, alpha=0.5, linewidth=5, legend=None)

    # Set chart details
    ax.xaxis.label.set_color('white')
    ax.yaxis.label.set_color('white')
    ax.tick_params(axis='x', colors='white', labelsize=16, direction='out', length=6, width=2, rotation=37)
    ax.tick_params(axis='y', colors='white', labelsize=12, direction='out', length=6, width=2)
    ax.set_title('Top 10 Contributors: Ranking Company Contributions', color='white', fontsize=16)
    ax.set_xlabel('Company', fontsize=14)
    ax.set_ylabel('Count', fontsize=14)
    ax.grid(True, which='both', axis='y', color='gray', linestyle='-', linewidth=0.5, alpha=0.5)
    ax.set_axisbelow(True)

    for spine in ax.spines.values():
        spine.set_color('white')
        spine.set_linewidth(2)
    ax.spines['right'].set_visible(False)
    ax.spines['top'].set_visible(False)

    #plt.show()
    return fig