Spaces:
Sleeping
Sleeping
File size: 7,164 Bytes
070c576 6449689 f9c03d9 4425add c8197d4 5b23034 26d26f0 92d0a3c 4d5131c 6449689 d6d1995 6449689 410e03d 4011ea8 327828d 4011ea8 410e03d 327828d 410e03d 6449689 410e03d 327828d 410e03d 327828d 410e03d e949ec2 410e03d 031a5a3 9a5be77 2591ca4 031a5a3 9711498 031a5a3 9a5be77 031a5a3 da35bf4 b792ddc da35bf4 031a5a3 2591ca4 031a5a3 410e3c8 aeaf0db 031a5a3 8cfa293 d6d1995 c838309 8cfa293 ee041e5 8817d01 8cfa293 d6d1995 8cfa293 d6d1995 1b13e5d 11215d4 1b13e5d fd68761 1b13e5d 4011ea8 410e03d 2acbe1f 410e03d 6449689 070c576 69bb9c0 d6d1995 fcf5842 d6d1995 2acbe1f d6d1995 ac2abcc 6449689 070c576 a747dde ac2abcc 378fa83 6449689 070c576 6449689 070c576 7e62d93 6449689 4011ea8 2acbe1f 7e62d93 4011ea8 7e62d93 69bb9c0 070c576 6449689 13ff5b8 070c576 4011ea8 070c576 c8197d4 853deb7 c8197d4 070c576 c8197d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import gradio as gr
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
import os
import pandas as pd
import numpy as np
from groq import Groq
import anthropic
from users_management import update_json, users
from code_df_custom import load_excel
import zipfile
from openai import OpenAI
#users = ['maksG', 'AlmaA', 'YchK']
def ask_llm(query, user_input, client_index, user, keys):
messages = [
{
"role": "system",
"content": f"You are a helpful assistant. Only show your final response to the **User Query**! Do not provide any explanations or details: \n# User Query:\n{query}."
},
{
"role": "user",
"content": user_input,
}
]
systemC = messages[0]["content"]
messageC = [{
"role": "user",
"content": [{
"type": "text",
"text": user_input
}]
}]
if "Mistral" in client_index:
client = MistralClient(api_key=os.environ[user['api_keys']['mistral']])
model_map = {
"Mistral Tiny": "mistral-tiny",
"Mistral Small": "mistral-small-latest",
"Mistral Medium": "mistral-medium",
}
chat_completion = client.chat(messages=messages, model=model_map[client_index])
elif "Claude" in client_index:
client = anthropic.Anthropic(api_key=os.environ[user['api_keys']['claude']])
model_map = {
"Claude Sonnet": "claude-3-sonnet-20240229",
"Claude Opus": "claude-3-opus-20240229",
}
response = client.messages.create(
model=model_map[client_index],
max_tokens=350,
temperature=0,
system=systemC,
messages=messageC
)
return response.content[0].text
elif "GPT 4o" in client_index:
client = OpenAI(api_key=os.environ["OPENAI_YCHK"])
response = client.chat.completions.create(
model="gpt-4o",
messages=messageC
)
return response.choices[0][message][content].text
elif "Perplexity" in client_index:
client = OpenAI(api_key=os.environ["PERPLEXITY_ALMAA"], base_url="https://api.perplexity.ai")
model_map = {
"Perplexity Llama3 70b": "llama-3-70b-instruct",
"Perplexity Llama3 8b": "llama-3-8b-instruct",
"Perplexity Llama3 Sonar Small": "llama-3-sonar-small-32k-chat",
"Perplexity Llama3 Sonar Large": "llama-3-sonar-large-32k-chat"
}
response = client.chat.completions.create(
model=model_map[client_index],
messages=messageC
)
responseContent = str(response.choices[0].message.content)
print(responseContent)
return responseContent,keys
elif "Groq" in client_index:
try:
client = Groq(api_key= os.getenv(keys[0]))
model_map = {
"Groq Mixtral": "mixtral-8x7b-32768",
"Groq Llama3 70b": "llama3-70b-8192",
"Groq Llama3 8b": "llama3-8b-8192"
}
chat_completion = client.chat.completions.create(
messages=messages,
model=model_map[client_index],
)
response = chat_completion.choices[0].message.content
except Exception as e:
print("Change key")
if keys[0] == keys[1][0]:
keys[0] = keys[1][1]
elif keys[0] == keys[1][1]:
keys[0] = keys[1][2]
else:
keys[0] = keys[1][0]
client = Groq(api_key= os.getenv(keys[0]))
chat_completion = client.chat.completions.create(
messages=messages,
model='llama3-8b-8192',
)
response = chat_completion.choices[0].message.content
else:
raise ValueError("Unsupported client index provided")
# Return the response, handling the structure specific to Groq and Mistral clients.
return chat_completion.choices[0].message.content,keys if client_index != "Claude" else chat_completion
def filter_df(df, column_name, keywords):
if len(keywords)>0:
if column_name in df.columns:
contains_keyword = lambda x: any(keyword.lower() in (x.lower() if type(x)==str else '') for keyword in keywords)
filtered_df = df[df[column_name].apply(contains_keyword)]
else:
contains_keyword = lambda row: any(keyword.lower() in (str(cell).lower() if isinstance(cell, str) else '') for keyword in keywords for cell in row)
filtered_df = df[df.apply(contains_keyword, axis=1)]
else:
filtered_df = df
return filtered_df
def chat_with_mistral(source_cols, dest_col, prompt, excel_file, url, search_col, keywords, client, user):
# API Keys for Groq :
KEYS = ['GROQ_API_KEY1', 'GROQ_API_KEY2', 'GROQ_API_KEY3']
GroqKey = KEYS[0]
gloabal_keys = [GroqKey, KEYS]
new_prompts, new_keywords, new_user, conf_file_path = update_json(user, prompt, keywords)
print(f'xlsxfile = {excel_file}')
df = pd.read_excel(excel_file)
df[dest_col] = ""
if excel_file:
file_name = excel_file.split('.xlsx')[0] + "_with_" + dest_col.replace(' ', '_') + ".xlsx"
elif url.endswith('Docs/', 'Docs'):
file_name = url.split("/Docs")[0].split("/")[-1] + ".xlsx"
else:
file_name = "meeting_recap_grid.xlsx"
print(f"Keywords: {keywords}")
filtred_df = filter_df(df, search_col, keywords)
cpt = 1
for index, row in filtred_df.iterrows():
concatenated_content = "\n\n".join(f"{column_name}: {str(row[column_name])}" for column_name in source_cols)
if not concatenated_content == "\n\n".join(f"{column_name}: nan" for column_name in source_cols):
llm_answer,gloabal_keys = ask_llm(prompt[0], concatenated_content, client, user, gloabal_keys)
print(f"{cpt}/{len(filtred_df)}\nQUERY:\n{prompt[0]}\nCONTENT:\n{concatenated_content[:200]}...\n\nANSWER:\n{llm_answer}")
df.at[index, dest_col] = llm_answer
cpt += 1
# progress((index+1)/len(df),desc=f'Request {index+1}/{len(df)}')
df.to_excel(file_name, index=False)
zip_file_path = 'config_file.zip'
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
zipf.write(conf_file_path, os.path.basename(conf_file_path))
return file_name, df.head(5), new_prompts, new_keywords, new_user, zip_file_path
def get_columns(file,progress=gr.Progress()):
if file is not None:
#df = pd.read_excel(file)
filename, df = load_excel(file)
columns = list(df.columns)
return gr.update(choices=columns), gr.update(choices=columns), gr.update(choices=columns), gr.update(choices=columns + [""]), gr.update(choices=columns + ['[ALL]']), df.head(5), filename, df
else:
return gr.update(choices=[]), gr.update(choices=[]), gr.update(choices=[]), gr.update(choices=[]), gr.update(choices=[]), pd.DataFrame(), '', pd.DataFrame() |