File size: 10,711 Bytes
efa9b10
e798441
 
 
68bf5c0
56f5312
d7d88a6
738c47d
efa9b10
def0304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f02448c
 
 
 
efa9b10
783a6b1
d7d88a6
 
5438143
d7d88a6
1188f75
d7d88a6
 
01936b7
d7d88a6
 
 
 
 
783a6b1
efa9b10
d9f31af
efa9b10
3b26dac
8af7a53
3b26dac
7cb2e91
 
7fa6d71
7cb2e91
efa9b10
 
7cb2e91
cc4d71b
b901c76
6fdd23e
efa9b10
0ec483d
16f3b53
def0304
 
7ca5761
def0304
efa9b10
 
 
b901c76
11711e5
3b26dac
 
6fdd23e
2b6d359
019928f
f02448c
11711e5
435b599
2b6d359
 
56f5312
019928f
3dae14e
56f5312
3b26dac
56f5312
da4b039
56f5312
 
 
3b26dac
56f5312
 
 
 
738c47d
 
b901c76
738c47d
 
 
 
5438143
738c47d
 
418d1f5
4c4cf13
738c47d
 
 
efa9b10
3b26dac
efa9b10
 
783a6b1
d7d88a6
 
 
783a6b1
738c47d
7cb2e91
7854dd4
 
1b0a7da
738c47d
56f5312
019928f
56f5312
7cc65b4
56f5312
3b26dac
56f5312
83736e3
738c47d
418d1f5
 
 
4c4cf13
738c47d
56f5312
 
 
 
da4b039
56f5312
f02448c
efa9b10
724556d
efa9b10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import gradio as gr
from scrape_3gpp import *
from excel_chat import *
from classification import *
from chart_generation import *
from charts_advanced import *
from users_management import *
from code_df_custom import *


# Categories
categories = [
{
  "topic": "Confidentiality and Privacy Protection",
  "description": "This topic covers the protection of confidentiality, privacy, and integrity in security systems. It also includes authentication and authorization processes.",
  "experts": ["Mireille"]
},
{
  "topic": "Distributed Trust and End-User Trust Models",
  "description": "This topic focuses on distributed trust models and how end-users establish trust in secure systems.",
  "experts": ["Mireille", "Khawla"]
},
{
  "topic": "Secure Element and Key Provisioning",
  "description": "This topic involves the secure element in systems and the process of key provisioning.",
  "experts": ["Mireille"]
},
{
  "topic": "Residential Gateway Security",
  "description": "This topic covers the security aspects of Residential Gateways.",
  "experts": ["Mireille"]
},
{
  "topic": "Standalone Non-Public Network (SNPN) Inter-Connection and Cybersecurity",
  "description": "This topic focuses on the inter-connection of Standalone Non-Public Networks and related cyber-security topics.",
  "experts": ["Khawla"]
},
{
  "topic": "Distributed Ledger and Blockchain in SNPN",
  "description": "This topic covers the use of distributed ledger technology and blockchain in securing Standalone Non-Public Networks.",
  "experts": ["Khawla"]
},
{
  "topic": "Distributed Networks and Communication",
  "description": "This topic involves distributed networks such as mesh networks, ad-hoc networks, and multi-hop networks, and their cyber-security aspects.",
  "experts": ["Guillaume"]
},
{
  "topic": "Swarm of Drones and Unmanned Aerial Vehicles Network Infrastructure",
  "description": "This topic covers the network infrastructure deployed by Swarm of Drones and Unmanned Aerial Vehicles.",
  "experts": ["Guillaume"]
},
{
  "topic": "USIM and Over-the-Air Services",
  "description": "This topic involves USIM and related over-the-air services such as Steering of Roaming, roaming services, network selection, and UE configuration.",
  "experts": ["Vincent"]
},
{
  "topic": "Eco-Design and Societal Impact of Technology",
  "description": "This topic covers eco-design concepts, including energy saving, energy efficiency, carbon emissions, and the societal impact of technology.",
  "experts": ["Pierre"]
},
{
  "topic": "Service Requirements of New Services",
  "description": "This topic involves defining service requirements for new services, detecting low signals of new trends and technologies, and assessing their impact on USIM services or over-the-air services.",
  "experts": ["Ly-Thanh"]
},
{
  "topic": "Satellite and Non Terrestrial Networks",
  "description": "This topic covers satellite networks, Non Terrestrial Networks, Private Networks, IoT, Inter Satellite communication, and Radio Access Network.",
  "experts": ["Nicolas"]
},
{
  "topic": "Public Safety and Emergency Communication",
  "description": "This topic involves Public Safety Communication, Military Communication, Emergency Calls, Emergency Services, Disaster Communication Access, and other related areas.",
  "experts": ["Dorin"]
}
]

df_cate = pd.DataFrame(categories)

# def update_label(label1):
#     return gr.update(choices=list(df.columns))


with gr.Blocks() as demo:
    
    with gr.Row():
        with gr.Column():
            gr.Markdown("## Extraction, Classification and AI tool")
        with gr.Column():
            md_username = gr.Markdown(value='## Hi Guest!')
            btn_logout = gr.Button("Logout")
    with gr.Accordion(label="**Login** to keep user preferences", open=False):
        st_user = gr.State(value={"name":"Guest", "hashed_password":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855", "history": { "keywords": [ "value1", "value3", "value4"], "prompts": [] }})
        with gr.Column():
            tb_user = gr.Textbox(label='Username')
            tb_pwd = gr.Textbox(label='Password', type='password')
        with gr.Row():
            btn_login = gr.Button('Login')

    with gr.Tab("File extraction"):
        gr.Markdown("### This part aims to extract the most relevant content and information about every contribution from a 3gpp meeting")
        gr.Markdown(" Put either just a link, or a link and an excel file with an 'Actions' column")
        with gr.Row():
            dd_url = gr.Dropdown(label="(e.g. https://www.3gpp.org/ftp/TSG_SA/WG1_Serv/TSGS1_105_Athens/Docs)", multiselect=False, value="https://www.3gpp.org/ftp/", allow_custom_value=True, scale=9)
            btn_search = gr.Button("Search")
        with gr.Accordion("Filter by file status", open=False):
            with gr.Row():
                dd_status =  gr.Dropdown(label="Status to look for (Optional)", allow_custom_value=False, multiselect=True, scale=7)
                btn_search_status = gr.Button("Search for status", scale=2)
        btn_extract = gr.Button("Extract excel from URL")


    with gr.Tab("Ask LLM"):
        gr.Markdown("### This section utilizes Large Language Models (LLMs) to query rows in an Excel file")
        dd_source_ask = gr.Dropdown(label="Source Column(s)", multiselect=True)
        tb_destcol = gr.Textbox(label="Destination column label (e.g. Summary, ELI5, PAB)")
        dd_prompt = gr.Dropdown(label="Prompt", allow_custom_value=True, multiselect=True, max_choices=1)
        dd_llm = gr.Dropdown(["Mistral Tiny","Mistral Small","Mistral Medium", "Claude Sonnet", "Claude Opus", "Groq (mixtral)"],value="Groq (mixtral)", label="Choose your LLM")
        with gr.Accordion("Filters", open=False):
            with gr.Row():
                dd_searchcol = gr.Dropdown(label="Column to look into (Optional)", value='[ALL]', multiselect=False, scale=4)
                dd_keywords =  gr.Dropdown(label="Words to look for (Optional)", multiselect=True, allow_custom_value=True, scale=5)
        mist_button = gr.Button("Ask AI")
            
    with gr.Tab("Classification by topic"):
        gr.Markdown("### This section will categories each contribution in your own personalized categories")
        dd_source_class = gr.Dropdown(label="Source Column", multiselect=False)
        gr.Markdown("### The predefined categories can be modified at any time")
        df_category = gr.DataFrame(label='categories', value=df_cate, interactive=True)
        btn_classif = gr.Button("Categorize")

    with gr.Tab(" Personalised Charts Generation"):
        with gr.Row():
            dd_label1 = gr.Dropdown(label="Label 1", multiselect=False)
            dd_label2 = gr.Dropdown(label="Label 2", value="", multiselect=False)
        btn_chart = gr.Button("Generate Bar Plot")
        plt_figure = gr.Plot()

    with gr.Tab("Meeting Report (charts)"):
        #gr.Markdown("## 🚧 Actuellement en maintenance 🚧")
        with gr.Tab("Overall"):
            btn_overall = gr.Button("Overall Review")
        with gr.Tab("By Expert"):
            dd_exp=gr.Dropdown(label="Experts", multiselect=False, allow_custom_value=True,)
            btn_expert = gr.Button("Top 10 by expert")
        with gr.Tab("By Company"):
            tb_com=gr.Textbox(label="Company Name",info="You can write 1, 2 or 3 company names at the same time")
            btn_type = gr.Button("Company info")
        with gr.Row():
            plt_chart = gr.Plot(label="Graphique")
            plt_chart2 = gr.Plot(label="Graphique")
            plt_chart3 = gr.Plot(label="Graphique")

    with gr.Tab("Code on your file"):
        gr.Markdown("### This section lets you add your own code to add functions and filters to edit the files")
        with gr.Accordion("Input DataFrame Preview", open=False):
            df_input = gr.DataFrame(interactive=False)
        gr.Markdown("```python\ndf = pd.read_excel(YOUR_FILE)\n```")
        cd_code = gr.Code(value="# Create a copy of the original DataFrame\nnew_df = df.copy()\n\n# Add a new column to the copy\nnew_df['NewColumn'] = 'New Value'", language='python')
        gr.Markdown("```python\nnew_df.to_excel(YOUR_NEW_FILE)\nreturn YOUR_NEW_FILE\n```")

        btn_run_code = gr.Button()
        error_display = gr.Textbox(label="Errors", value="")
        df_output_code = gr.DataFrame(interactive=False)
        btn_export_df = gr.Button('Export df as excel')
    st_filename = gr.State()
    
    with gr.Accordion("Excel Preview", open=False):
          df_output = gr.DataFrame()
    fi_excel = gr.File(label="Excel File")

    # authentication
    btn_login.click(auth_user, inputs=[tb_user, tb_pwd], outputs=[st_user, md_username, dd_prompt, dd_keywords])
    tb_pwd.submit(auth_user, inputs=[tb_user, tb_pwd], outputs=[st_user, md_username, dd_prompt, dd_keywords])
    btn_logout.click(logout, inputs=None, outputs=[st_user, md_username, dd_prompt, dd_keywords])
    
    # 3GPP scraping
    btn_search_status.click(extract_statuses, inputs=dd_url, outputs=dd_status)
    btn_search.click(browse_folder, inputs=dd_url, outputs=dd_url)
    dd_url.change(browse_folder, inputs=dd_url, outputs=dd_url)
    #fi_excel.change(get_expert,inputs=fi_excel, outputs=dd_exp)
    fi_excel.change(get_columns, inputs=[fi_excel], outputs=[dd_source_ask, dd_source_class, dd_label1, dd_label2, dd_searchcol, df_output,st_filename, df_input])
    
    btn_extract.click(extractionPrincipale, inputs=[dd_url, fi_excel, dd_status], outputs=[fi_excel])
    
    mist_button.click(chat_with_mistral, inputs=[dd_source_ask, tb_destcol, dd_prompt, fi_excel, dd_url, dd_searchcol, dd_keywords, dd_llm, st_user], outputs=[fi_excel, df_output, dd_prompt, dd_keywords, st_user])
    
    btn_classif.click(classification, inputs=[dd_source_class, fi_excel, df_category], outputs=[fi_excel, df_output])
    
    btn_chart.click(create_bar_plot, inputs=[fi_excel, dd_label1, dd_label2], outputs=[plt_figure])

    

    btn_run_code.click(run_code_and_update_ui, inputs=[fi_excel, cd_code], outputs=[df_output_code])
    btn_export_df.click(export_df, inputs=[df_output_code, st_filename], outputs=fi_excel)
    
    
    btn_overall.click(generate_company_chart,inputs=[fi_excel], outputs=[plt_chart])
    btn_overall.click(status_chart,inputs=[fi_excel], outputs=[plt_chart2])
    btn_overall.click(category_chart,inputs=[fi_excel], outputs=[plt_chart3])
    btn_expert.click(chart_by_expert,inputs=[fi_excel,dd_exp], outputs=[plt_chart])
    btn_type.click(company_document_type,inputs=[fi_excel,tb_com], outputs=[plt_chart])
    # dd_label1.change(update_label, inputs=[dd_label1], outputs=[dd_label2])

 
demo.launch(debug=True)